cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109814 a(n) is the largest k such that n can be written as sum of k consecutive positive integers.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 3, 4, 2, 3, 2, 4, 5, 1, 2, 4, 2, 5, 6, 4, 2, 3, 5, 4, 6, 7, 2, 5, 2, 1, 6, 4, 7, 8, 2, 4, 6, 5, 2, 7, 2, 8, 9, 4, 2, 3, 7, 5, 6, 8, 2, 9, 10, 7, 6, 4, 2, 8, 2, 4, 9, 1, 10, 11, 2, 8, 6, 7, 2, 9, 2, 4, 10, 8, 11, 12, 2, 5, 9, 4, 2, 8, 10, 4, 6, 11, 2, 12, 13, 8, 6, 4, 10, 3, 2, 7, 11, 8, 2, 12
Offset: 1

Views

Author

Keywords

Comments

n is the sum of at most a(n) consecutive positive integers. As suggested by David W. Wilson, Aug 15 2005: Suppose n is to be written as sum of k consecutive integers starting with m, then 2n = k(2m + k - 1). Only one of the factors is odd. For each odd divisor d of n there is a unique corresponding k = min(d,2n/d). a(n) is the largest among those k. - Jaap Spies, Aug 16 2005
The numbers that can be written as a sum of k consecutive positive integers are those in column k of A141419 (as a triangle). - Peter Munn, Mar 01 2019
The numbers that cannot be written as a sum of two or more consecutive positive integers are the powers of 2. So a(n) = 1 iff n = 2^k for k >= 0. - Bernard Schott, Mar 03 2019

Examples

			Examples provided by _Rainer Rosenthal_, Apr 01 2008:
1 = 1     ---> a(1) = 1
2 = 2     ---> a(2) = 1
3 = 1+2   ---> a(3) = 2
4 = 4     ---> a(4) = 1
5 = 2+3   ---> a(5) = 2
6 = 1+2+3 ---> a(6) = 3
a(15) = 5: 15 = 15 (k=1), 15 = 7+8 (k=2), 15 = 4+5+6 (k=3) and 15 = 1+2+3+4+5 (k=5). - _Jaap Spies_, Aug 16 2005
		

Crossrefs

Cf. A000079 (powers of 2), A000217 (triangular numbers).

Programs

  • Maple
    A109814:= proc(n) local m, k, d; m := 0; for d from 1 by 2 to n do if n mod d = 0 then k := min(d, 2*n/d): fi; if k > m then m := k fi: od; return(m); end proc; seq(A109814(i),i=1..150); # Jaap Spies, Aug 16 2005
  • Mathematica
    a[n_] := Reap[Do[If[OddQ[d], Sow[Min[d, 2n/d]]], {d, Divisors[n]}]][[2, 1]] // Max; Table[a[n], {n, 1, 102}]
  • Python
    from sympy import divisors
    def a(n): return max(min(d, 2*n//d) for d in divisors(n) if d&1)
    print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Dec 23 2022
  • Sage
    [sloane.A109814(n) for n in range(1,20)]
    # Jaap Spies, Aug 16 2005
    

Formula

From Reinhard Zumkeller, Apr 18 2006: (Start)
a(n)*(a(n)+2*A118235(n)-1)/2 = n;
a(A000079(n)) = 1;
a(A000217(n)) = n. (End)

Extensions

Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar