A109814 a(n) is the largest k such that n can be written as sum of k consecutive positive integers.
1, 1, 2, 1, 2, 3, 2, 1, 3, 4, 2, 3, 2, 4, 5, 1, 2, 4, 2, 5, 6, 4, 2, 3, 5, 4, 6, 7, 2, 5, 2, 1, 6, 4, 7, 8, 2, 4, 6, 5, 2, 7, 2, 8, 9, 4, 2, 3, 7, 5, 6, 8, 2, 9, 10, 7, 6, 4, 2, 8, 2, 4, 9, 1, 10, 11, 2, 8, 6, 7, 2, 9, 2, 4, 10, 8, 11, 12, 2, 5, 9, 4, 2, 8, 10, 4, 6, 11, 2, 12, 13, 8, 6, 4, 10, 3, 2, 7, 11, 8, 2, 12
Offset: 1
Keywords
Examples
Examples provided by _Rainer Rosenthal_, Apr 01 2008: 1 = 1 ---> a(1) = 1 2 = 2 ---> a(2) = 1 3 = 1+2 ---> a(3) = 2 4 = 4 ---> a(4) = 1 5 = 2+3 ---> a(5) = 2 6 = 1+2+3 ---> a(6) = 3 a(15) = 5: 15 = 15 (k=1), 15 = 7+8 (k=2), 15 = 4+5+6 (k=3) and 15 = 1+2+3+4+5 (k=5). - _Jaap Spies_, Aug 16 2005
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- K. S. Brown's Mathpages, Partitions into Consecutive Integers
- A. Heiligenbrunner, Sum of adjacent numbers (in German).
- Jaap Spies, Problem C NAW 5/6 nr. 2 June 2005, July 2005 (solution to problem below).
- Jaap Spies, Sage program for computing A109814
- Universitaire Wiskunde Competitie, Problem C, Nieuw Archief voor Wiskunde, 5/6, no. 2, Problems/UWC, Jun 2005, pp. 181-182.
Crossrefs
Programs
-
Maple
A109814:= proc(n) local m, k, d; m := 0; for d from 1 by 2 to n do if n mod d = 0 then k := min(d, 2*n/d): fi; if k > m then m := k fi: od; return(m); end proc; seq(A109814(i),i=1..150); # Jaap Spies, Aug 16 2005
-
Mathematica
a[n_] := Reap[Do[If[OddQ[d], Sow[Min[d, 2n/d]]], {d, Divisors[n]}]][[2, 1]] // Max; Table[a[n], {n, 1, 102}]
-
Python
from sympy import divisors def a(n): return max(min(d, 2*n//d) for d in divisors(n) if d&1) print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Dec 23 2022
-
Sage
[sloane.A109814(n) for n in range(1,20)] # Jaap Spies, Aug 16 2005
Formula
From Reinhard Zumkeller, Apr 18 2006: (Start)
a(n)*(a(n)+2*A118235(n)-1)/2 = n;
a(A000079(n)) = 1;
a(A000217(n)) = n. (End)
Extensions
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar
Comments