cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001227 Number of odd divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Keywords

Comments

Also (1) number of ways to write n as difference of two triangular numbers (A000217), see A136107; (2) number of ways to arrange n identical objects in a trapezoid. - Tom Verhoeff
Also number of partitions of n into consecutive positive integers including the trivial partition of length 1 (e.g., 9 = 2+3+4 or 4+5 or 9 so a(9)=3). (Useful for cribbage players.) See A069283. - Henry Bottomley, Apr 13 2000
This has been described as Sylvester's theorem, but to reduce ambiguity I suggest calling it Sylvester's enumeration. - Gus Wiseman, Oct 04 2022
a(n) is also the number of factors in the factorization of the Chebyshev polynomial of the first kind T_n(x). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Number of factors in the factorization of the polynomial x^n+1 over the integers. See also A000005. - T. D. Noe, Apr 16 2003
a(n) = 1 if and only if n is a power of 2 (see A000079). - Lekraj Beedassy, Apr 12 2005
Number of occurrences of n in A049777. - Philippe Deléham, Jun 19 2005
For n odd, n is prime if and only if a(n) = 2. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 10 2005
Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly once. Example: a(9)=3 because we have [3,3,2,1],[2,2,2,2,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006
Also the number of factors of the n-th Lucas polynomial. - T. D. Noe, Mar 09 2006
Lengths of rows of triangle A182469;
Denoted by Delta_0(n) in Glaisher 1907. - Michael Somos, May 17 2013
Also the number of partitions p of n into distinct parts such that max(p) - min(p) < length(p). - Clark Kimberling, Apr 18 2014
Row sums of triangle A247795. - Reinhard Zumkeller, Sep 28 2014
Row sums of triangle A237048. - Omar E. Pol, Oct 24 2014
A069288(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
a(n) is equal to the number of ways to write 2*n-1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers. Also a(n) is equal to the number of distinct values of k such that k/(2*n-1) + k divides (k/(2*n-1))^(k/(2*n-1)) + k, (k/(2*n-1))^k + k/(2*n-1) and k^(k/(2*n-1)) + k/(2*n-1). - Juri-Stepan Gerasimov, May 23 2016, Jul 15 2016
Also the number of odd divisors of n*2^m for m >= 0. - Juri-Stepan Gerasimov, Jul 15 2016
a(n) is odd if and only if n is a square or twice a square. - Juri-Stepan Gerasimov, Jul 17 2016
a(n) is also the number of subparts in the symmetric representation of sigma(n). For more information see A279387 and A237593. - Omar E. Pol, Nov 05 2016
a(n) is also the number of partitions of n into an odd number of equal parts. - Omar E. Pol, May 14 2017 [This follows from the g.f. Sum_{k >= 1} x^k/(1-x^(2*k)). - N. J. A. Sloane, Dec 03 2020]

Examples

			G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + 2*q^10 + ...
From _Omar E. Pol_, Nov 30 2020: (Start)
For n = 9 there are three odd divisors of 9; they are [1, 3, 9]. On the other hand there are three partitions of 9 into consecutive parts: they are [9], [5, 4] and [4, 3, 2], so a(9) = 3.
Illustration of initial terms:
                              Diagram
   n   a(n)                         _
   1     1                        _|1|
   2     1                      _|1 _|
   3     2                    _|1  |1|
   4     1                  _|1   _| |
   5     2                _|1    |1 _|
   6     2              _|1     _| |1|
   7     2            _|1      |1  | |
   8     1          _|1       _|  _| |
   9     3        _|1        |1  |1 _|
  10     2      _|1         _|   | |1|
  11     2    _|1          |1   _| | |
  12     2   |1            |   |1  | |
...
a(n) is the number of horizontal line segments in the n-th level of the diagram. For more information see A286001. (End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 487 Entry 47.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 306.
  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
  • Ronald. L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), see exercise 2.30 on p. 65.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28.

Crossrefs

If this sequence counts gapless sets by sum (by Sylvester's enumeration), these sets are ranked by A073485 and A356956. See also A055932, A066311, A073491, A107428, A137921, A333217, A356224, A356841, A356845.
Dirichlet inverse is A327276.

Programs

  • Haskell
    a001227 = sum . a247795_row
    -- Reinhard Zumkeller, Sep 28 2014, May 01 2012, Jul 25 2011
    
  • Magma
    [NumberOfDivisors(n)/Valuation(2*n, 2): n in [1..100]]; // Vincenzo Librandi, Jun 02 2019
    
  • Maple
    for n from 1 by 1 to 100 do s := 0: for d from 1 by 2 to n do if n mod d = 0 then s := s+1: fi: od: print(s); od:
    A001227 := proc(n) local a,d;
        a := 1 ;
        for d in ifactors(n)[2] do
            if op(1,d) > 2 then
                a := a*(op(2,d)+1) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jun 18 2015
  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Count[ OddQ[d], True]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 27 2004 *)
    Table[Total[Mod[Divisors[n], 2]],{n,105}] (* Zak Seidov, Apr 16 2010 *)
    f[n_] := Block[{d = DivisorSigma[0, n]}, If[ OddQ@ n, d, d - DivisorSigma[0, n/2]]]; Array[f, 105] (* Robert G. Wilson v *)
    a[ n_] := Sum[  Mod[ d, 2], { d, Divisors[ n]}]; (* Michael Somos, May 17 2013 *)
    a[ n_] := DivisorSum[ n, Mod[ #, 2] &]; (* Michael Somos, May 17 2013 *)
    Count[Divisors[#],?OddQ]&/@Range[110] (* _Harvey P. Dale, Feb 15 2015 *)
    (* using a262045 from A262045 to compute a(n) = number of subparts in the symmetric representation of sigma(n) *)
    (* cl = current level, cs = current subparts count *)
    a001227[n_] := Module[{cs=0, cl=0, i, wL, k}, wL=a262045[n]; k=Length[wL]; For[i=1, i<=k, i++, If[wL[[i]]>cl, cs++; cl++]; If[wL[[i]]Hartmut F. W. Hoft, Dec 16 2016 *)
    a[n_] := DivisorSigma[0, n / 2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    {a(n) = sumdiv(n, d, d%2)}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    {a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 4, p) * X))[n]}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    a(n)=numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Mar 16 2011
    
  • PARI
    a(n)=sum(k=1,round(solve(x=1,n,x*(x+1)/2-n)),(k^2-k+2*n)%(2*k)==0) \\ Charles R Greathouse IV, May 31 2013
    
  • PARI
    a(n)=sumdivmult(n,d,d%2) \\ Charles R Greathouse IV, Aug 29 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import factorint
    def A001227(n): return reduce(mul,(q+1 for p, q in factorint(n).items() if p > 2),1) # Chai Wah Wu, Mar 08 2021
  • SageMath
    def A001227(n): return len([1 for d in divisors(n) if is_odd(d)])
    [A001227(n) for n in (1..80)]  # Peter Luschny, Feb 01 2012
    

Formula

Dirichlet g.f.: zeta(s)^2*(1-1/2^s).
Comment from N. J. A. Sloane, Dec 02 2020: (Start)
By counting the odd divisors f n in different ways, we get three different ways of writing the ordinary generating function. It is:
A(x) = x + x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + ...
= Sum_{k >= 1} x^(2*k-1)/(1-x^(2*k-1))
= Sum_{k >= 1} x^k/(1-x^(2*k))
= Sum_{k >= 1} x^(k*(k+1)/2)/(1-x^k) [Ramanujan, 2nd notebook, p. 355.].
(This incorporates comments from Vladeta Jovovic, Oct 16 2002 and Michael Somos, Oct 30 2005.) (End)
G.f.: x/(1-x) + Sum_{n>=1} x^(3*n)/(1-x^(2*n)), also L(x)-L(x^2) where L(x) = Sum_{n>=1} x^n/(1-x^n). - Joerg Arndt, Nov 06 2010
a(n) = A000005(n)/(A007814(n)+1) = A000005(n)/A001511(n).
Multiplicative with a(p^e) = 1 if p = 2; e+1 if p > 2. - David W. Wilson, Aug 01 2001
a(n) = A000005(A000265(n)). - Lekraj Beedassy, Jan 07 2005
Moebius transform is period 2 sequence [1, 0, ...] = A000035, which means a(n) is the Dirichlet convolution of A000035 and A057427.
a(n) = A113414(2*n). - N. J. A. Sloane, Jan 24 2006 (corrected Nov 10 2007)
a(n) = A001826(n) + A001842(n). - Reinhard Zumkeller, Apr 18 2006
Sequence = M*V = A115369 * A000005, where M = an infinite lower triangular matrix and V = A000005, d(n); as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Equals A051731 * [1,0,1,0,1,...]; where A051731 is the inverse Mobius transform. - Gary W. Adamson, Nov 06 2007
a(n) = A000005(n) - A183063(n).
a(n) = d(n) if n is odd, or d(n) - d(n/2) if n is even, where d(n) is the number of divisors of n (A000005). (See the Weisstein page.) - Gary W. Adamson, Mar 15 2011
Dirichlet convolution of A000005 and A154955 (interpreted as a flat sequence). - R. J. Mathar, Jun 28 2011
a(A000079(n)) = 1; a(A057716(n)) > 1; a(A093641(n)) <= 2; a(A038550(n)) = 2; a(A105441(n)) > 2; a(A072502(n)) = 3. - Reinhard Zumkeller, May 01 2012
a(n) = 1 + A069283(n). - R. J. Mathar, Jun 18 2015
a(A002110(n)/2) = n, n >= 1. - Altug Alkan, Sep 29 2015
a(n*2^m) = a(n*2^i), a((2*j+1)^n) = n+1 for m >= 0, i >= 0 and j >= 0. a((2*x+1)^n) = a((2*y+1)^n) for positive x and y. - Juri-Stepan Gerasimov, Jul 17 2016
Conjectures: a(n) = A067742(n) + 2*A131576(n) = A082647(n) + A131576(n). - Omar E. Pol, Feb 15 2017
a(n) = A000005(2n) - A000005(n) = A099777(n)-A000005(n). - Danny Rorabaugh, Oct 03 2017
L.g.f.: -log(Product_{k>=1} (1 - x^(2*k-1))^(1/(2*k-1))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
G.f.: (psi_{q^2}(1/2) + log(1-q^2))/log(q), where psi_q(z) is the q-digamma function. - Michael Somos, Jun 01 2019
a(n) = A003056(n) - A238005(n). - Omar E. Pol, Sep 12 2021
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = log(2) (A002162). - Amiram Eldar, Mar 01 2023
a(n) = Sum_{i=1..n} (-1)^(i+1)*A135539(n,i). - Ridouane Oudra, Apr 13 2023

A286001 A table of partitions into consecutive parts (see Comments lines for definition).

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 5, 2, 6, 3, 1, 7, 3, 2, 8, 4, 3, 9, 4, 2, 10, 5, 3, 1, 11, 5, 4, 2, 12, 6, 3, 3, 13, 6, 4, 4, 14, 7, 5, 2, 15, 7, 4, 3, 1, 16, 8, 5, 4, 2, 17, 8, 6, 5, 3, 18, 9, 5, 3, 4, 19, 9, 6, 4, 5, 20, 10, 7, 5, 2, 21, 10, 6, 6, 3, 1, 22, 11, 7, 4, 4, 2, 23, 11, 8, 5, 5, 3, 24, 12, 7, 6, 6, 4, 25, 12, 8, 7, 3, 5
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2017

Keywords

Comments

This is a triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists successive blocks of k consecutive terms, where the m-th block starts with m, m>=1, and the first element of column k is in row k*(k+1)/2.
The partitions of n into consecutive parts are represented from the row n up to row A288529(n) as maximum, but in increasing order, exclusively in the columns where the blocks begin.
More precisely, the partition of n into exactly k consecutive parts (if such partition exists) is represented in the column k from the row n up to row n + k - 1 (see examples).
A288772(n) is the minimum number of rows that are required to represent in this table the partitions of all positive integers <= n into consecutive parts.
A288773(n) is the largest of all positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
A288774(n) is the largest positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
For a theorem related to this table see A286000.

Examples

			Triangle begins:
1;
2;
3,   1;
4,   2;
5,   2;
6,   3,  1;
7,   3,  2;
8,   4,  3;
9,   4,  2;
10,  5,  3,  1;
11,  5,  4,  2;
12,  6,  3,  3;
13,  6,  4,  4;
14,  7,  5,  2;
15,  7,  4,  3,  1;
16,  8,  5,  4,  2;
17,  8,  6,  5,  3;
18,  9,  5,  3,  4;
19,  9,  6,  4,  5;
20, 10,  7,  5,  2;
21, 10,  6,  6,  3,  1;
22, 11,  7,  4,  4,  2;
23, 11,  8,  5,  5,  3;
24, 12,  7,  6,  6,  4;
25, 12,  8,  7,  3,  5;
26, 13,  9,  5,  4,  6;
27, 13,  8,  6,  5,  2;
28, 14,  9,  7,  6,  3,  1;
...
Figures A..G show the location (in the columns of the table) of the partitions of n = 1..7 (respectively) into consecutive parts:
.   ------------------------------------------------------------------------
Fig:   A     B       C         D          E            F             G
.   ------------------------------------------------------------------------
. n:   1     2       3         4          5            6             7
Row ------------------------------------------------------------------------
1   | [1];|  1; |  1;     |  1;    |  1;        |  1;         |  1;        |
2   |     | [2];|  2;     |  2;    |  2;        |  2;         |  2;        |
3   |     |     | [3],[1];|  3,  1;|  3,  1;    |  3,  1;     |  3,  1;    |
4   |     |     |  4 ,[2];| [4], 2;|  4,  2;    |  4,  2;     |  4,  2;    |
5   |     |     |         |        | [5],[2];   |  5,  2;     |  5,  2;    |
6   |     |     |         |        |  6, [3], 3;| [6], 3, [1];|  6,  3,  1;|
7   |     |     |         |        |            |  7,  3, [2];| [7],[3], 2;|
8   |     |     |         |        |            |  8,  4, [3];|  8, [4], 3;|
.   ------------------------------------------------------------------------
Figure F: for n = 6 the partitions of 6 into consecutive parts (but with the parts in increasing order) are [6] and [1, 2, 3]. These partitions have 1 and 3 consecutive parts respectively. On the other hand  we can find the mentioned partitions in the columns 1 and 3 of this table, starting at the row 6.
.
Figures H..K show the location (in the columns of the table) of the partitions of 8..11 (respectively) into consecutive parts:
.    --------------------------------------------------------------------
Fig:        H             I                  J                 K
.    --------------------------------------------------------------------
. n:        8             9                  10                11
Row  --------------------------------------------------------------------
1    |  1;        |  1;            |   1;             |   1;            |
1    |  2;        |  2;            |   2;             |   2;            |
3    |  3,  1;    |  3,  1;        |   3,  1;         |   3,  1;        |
4    |  4,  2;    |  4,  2;        |   4,  2;         |   4,  2;        |
5    |  5,  2;    |  5,  2;        |   5,  2;         |   5,  2;        |
6    |  6,  3,  3;|  6,  3,  1;    |   6,  3,  1;     |   6,  3,  1;    |
7    |  7,  3,  2;|  7,  3,  2;    |   7,  3,  2;     |   7,  3,  2;    |
8    | [8], 4,  1;|  8,  4,  3;    |   8,  4,  3;     |   8,  4,  3;    |
9    |            | [9],[4],[2];   |   9,  4,  2;     |   9,  4,  2;    |
10   |            | 10, [5],[3], 1;| [10], 5,  3, [1];|  10,  5,  3,  1;|
11   |            | 11,  5, [4], 2;|  11,  5,  4, [2];| [11],[5], 4,  2;|
12   |            |                |  12,  6,  3, [3];|  12, [6], 3,  3;|
13   |            |                |  13,  6,  4, [4];|  13,  6,  4,  4;|
.    --------------------------------------------------------------------
Figure J: For n = 10 the partitions of 10 into consecutive parts (but with the parts in increasing order) are [10] and [1, 2, 3, 4]. These partitions have 1 and 4 consecutive parts respectively. On the other hand, we can find the mentioned partitions in the columns 1 and 4 of this table, starting at the row 10.
.
Illustration of initial terms arranged into the diagram of the triangle A237591:
.                                                           _
.                                                         _|1|
.                                                       _|2 _|
.                                                     _|3  |1|
.                                                   _|4   _|2|
.                                                 _|5    |2 _|
.                                               _|6     _|3|1|
.                                             _|7      |3  |2|
.                                           _|8       _|4 _|3|
.                                         _|9        |4  |2 _|
.                                       _|10        _|5  |3|1|
.                                     _|11         |5   _|4|2|
.                                   _|12          _|6  |3  |3|
.                                 _|13           |6    |4 _|4|
.                               _|14            _|7   _|5|2 _|
.                             _|15             |7    |4  |3|1|
.                           _|16              _|8    |5  |4|2|
.                         _|17               |8     _|6 _|5|3|
.                       _|18                _|9    |5  |3  |4|
.                     _|19                 |9      |6  |4 _|5|
.                   _|20                  _|10    _|7  |5|2 _|
.                 _|21                   |10     |6   _|6|3|1|
.               _|22                    _|11     |7  |4  |4|2|
.             _|23                     |11      _|8  |5  |5|3|
.           _|24                      _|12     |7    |6 _|6|4|
.         _|25                       |12       |8   _|7|3  |5|
.       _|26                        _|13      _|9  |5  |4 _|6|
.     _|27                         |13       |8    |6  |5|2 _|
.    |28                           |14       |9    |7  |6|3|1|
...
The number of horizontal line segments in the n-th row of the diagram equals A001227(n), the number of partitions of n into consecutive parts.
.
From _Omar E. Pol_, Dec 15 2020: (Start)
The connection (described step by step) between the triangle of A299765 and the above geometric diagram is as follows:
.
   [1];                                       [1];
   [2];                                       [2];
   [3], [2, 1];                               [3], [2, 1];
   [4];                                       [4];
   [5], [3, 2];                               [5], [3, 2];
   [6], [3, 2, 1];                            [6],         [3, 2, 1];
   [7], [4, 3];                               [7], [4, 3];
   [8];                                       [8];
   [9], [5, 4], [4, 3, 2];                    [9], [5, 4], [4, 3, 2];
.
         Figure 1.                                   Figure 2.
.
We start with the irregular                Then we write the same triangle
triangle of A299765 in which               but ordered in columns where the
row n lists the partitions                 column k lists the partitions of
of n into consecutive parts.               n into k consecutive parts.
.
.   _                                          _
    1|                                        |1
    _                                          _
    2|                                        |2
    _    _ _                                   _      _
    3|   2,1|                                 |3     |1
    _                                          _     |2
    4|                                        |4
    _    _ _                                   _      _
    5|   3,2|                                 |5     |2
    _           _ _ _                          _     |3      _
    6|          3,2,1|                        |6            |1
    _    _ _                                   _      _     |2
    7|   4,3|                                 |7     |3     |3
    _                                          _     |4
    8|                                        |8
    _    _ _    _ _ _                          _      _      _
    9|   5,4|   4,3,2|                        |9     |4     |2
                                                     |5     |3
                                                            |4
.
         Figure 3.                                Figure 4.
.
Then we draw to the right of               Then we rotate each sub-diagram
each partition a vertical                  90 degrees counterclockwise.
toothpick and above each part              Every horizontal toothpick represents
we draw a horizontal toothpick.            the existence of that partition.
.                                          The number of vertical toothpicks
.                                          equals the number of parts.
.
.                     _                                      _
                    _|1                                    _|1
                  _|2 _                                  _|2 _
                _|3  |1                                _|3  |1
              _|4   _|2                              _|4   _|2
            _|5    |2 _                            _|5    |2 _
          _|6     _|3|1                          _|6     _|3|1
        _|7      |3  |2                        _|7      |3  |2
      _|8       _|4 _|3                      _|8       _|4 _|3
     |9        |4  |2                       |9        |4  |2
               |5  |3
                   |4
.
         Figure 5.                                Figure 6.
.
Then we join the sub-diagrams              Finally we erase the parts that
forming staircases (or zig-zag             are beyond a certain level (in
paths) that represent the                  this case beyond the 9th level)
partitions that have the same              to make the diagram more standard.
number of parts.
.
The numbers in the k-th staircase (from left to right) are the elements of the k-th column of the triangular array.
Note that this diagram is essentially the same diagram used to represent the triangles A237048, A235791, A237591, and other related sequences such as A001227, A060831 and A204217.
There is an infinite family of this kind of triangles, which are related to polygonal numbers and partitions into consecutive parts that differ by d. For more information see the theorems in A285914 and A303300.
Note that if we take two images of the diagram mirroring each other, with the y-axis in the middle of them, then a new diagram is formed, which is symmetric and represents the sequence A237593 as an isosceles triangle. Then if we fold each level (or row) of that isosceles triangle we essentially obtain the structure of the pyramid described in A245092 whose terraces at the n-th level have a total area equal to sigma(n) = A000203(n). (End)
		

Crossrefs

Another version of A286000.
Tables of the same family where the consecutive parts differ by d are A010766 (d=0), this sequence (d=1), A332266 (d=2), A334945 (d=3), A334618(d=4).

A286000 A table of partitions into consecutive parts (see Comments lines for definition).

Original entry on oeis.org

1, 2, 3, 2, 4, 1, 5, 3, 6, 2, 3, 7, 4, 2, 8, 3, 1, 9, 5, 4, 10, 4, 3, 4, 11, 6, 2, 3, 12, 5, 5, 2, 13, 7, 4, 1, 14, 6, 3, 5, 15, 8, 6, 4, 5, 16, 7, 5, 3, 4, 17, 9, 4, 2, 3, 18, 8, 7, 6, 2, 19, 10, 6, 5, 1, 20, 9, 5, 4, 6, 21, 11, 8, 3, 5, 6, 22, 10, 7, 7, 4, 5, 23, 12, 6, 6, 3, 4, 24, 11, 9, 5, 2, 3, 25, 13, 8, 4, 7, 2
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2017

Keywords

Comments

This is a triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists successive blocks of k consecutive terms in decreasing order, where the m-th block starts with k + m - 1, m>=1, and the first element of column k is in the row k*(k+1)/2.
The partitions of n into consecutive parts are represented from the row n up to row A288529(n) as maximum, exclusively in the columns where the blocks begin.
More precisely, the partition of n into exactly k consecutive parts (if such partition exists) is represented in the column k from the row n up to row n + k - 1 (see examples).
A288772(n) is the minimum number of rows that are required to represent in this table the partitions of all positive integers <= n into consecutive parts.
A288773(n) is the largest of all positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
A288774(n) is the largest positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
Theorem: the smallest part of the partition of n into exactly k consecutive parts (if such partition exists) equals the number of positive integers <= n having a partition into exactly k consecutive parts.

Examples

			Table de partitions into consecutive parts (first 28 rows):
1;
2;
3,   2;
4,   1;
5,   3;
6,   2,  3;
7,   4,  2;
8,   3,  1;
9,   5,  4;
10,  4,  3,  4;
11,  6,  2,  3;
12,  5,  5,  2;
13,  7,  4,  1;
14,  6,  3,  5;
15,  8,  6,  4,  5;
16,  7,  5,  3,  4;
17,  9,  4,  2,  3;
18,  8,  7,  6,  2;
19, 10,  6,  5,  1;
20,  9,  5,  4,  6;
21, 11,  8,  3,  5,  6;
22, 10,  7,  7,  4,  5;
23, 12,  6,  6,  3,  4;
24, 11,  9,  5,  2,  3;
25, 13,  8,  4,  7,  2;
26, 12,  7,  8,  6,  1;
27, 14, 10,  7,  5,  7;
28, 13,  9,  6,  4,  6,  7;
...
Figures A..G show the location (in the columns of the table) of the partitions of n = 1..7 (respectively) into consecutive parts:
.   ------------------------------------------------------------------------
Fig:   A     B       C         D          E            F             G
.   ------------------------------------------------------------------------
. n:   1     2       3         4          5            6             7
Row ------------------------------------------------------------------------
1   | [1];|  1; |  1;     |  1;    |  1;        |  1;         |  1;        |
2   |     | [2];|  2;     |  2;    |  2;        |  2;         |  2;        |
3   |     |     | [3],[2];|  3;  2;|  3,  2;    |  3,  2;     |  3,  2;    |
4   |     |     |  4 ,[1];| [4], 1;|  4,  1;    |  4,  1;     |  4,  1;    |
5   |     |     |         |        | [5],[3];   |  5,  3;     |  5,  3;    |
6   |     |     |         |        |  6, [2], 3;| [6], 2, [3];|  6,  2,  3;|
7   |     |     |         |        |            |  7,  4, [2];| [7],[4], 2;|
8   |     |     |         |        |            |  8,  3, [1];|  8, [3], 1;|
.   ------------------------------------------------------------------------
Figure F: for n = 6 the partitions of 6 into consecutive parts are [6] and [3, 2, 1]. These partitions have 1 and 3 consecutive parts respectively. On the other hand  we can find the mentioned partitions in the columns 1 and 3 of this table, starting at the row 6.
.
Figures H..K show the location (in the columns of the table) of the partitions of 8..11 (respectively) into consecutive parts:
.    --------------------------------------------------------------------
Fig:        H             I                  J                 K
.    --------------------------------------------------------------------
. n:        8             9                  10                11
Row  --------------------------------------------------------------------
1    |  1;        |  1;            |   1;             |   1;            |
1    |  2;        |  2;            |   2;             |   2;            |
3    |  3,  2;    |  3,  2;        |   3,  2;         |   3,  2;        |
4    |  4,  1;    |  4,  1;        |   4,  1;         |   4,  1;        |
5    |  5,  3;    |  5,  3;        |   5,  3;         |   5,  3;        |
6    |  6,  2,  3;|  6,  2,  3;    |   6,  2,  3;     |   6,  2,  3;    |
7    |  7,  4,  2;|  7,  4,  2;    |   7,  4,  2;     |   7,  4,  2;    |
8    | [8], 3,  1;|  8,  3,  1;    |   8,  3,  1;     |   8,  3,  1;    |
9    |            | [9],[5],[4];   |   9,  5,  4;     |   9,  5,  4;    |
10   |            | 10, [4],[3], 4;| [10], 4,  3, [4];|  10,  4,  3;  4;|
11   |            | 11,  6, [2], 3;|  11,  6,  2; [3];| [11],[6], 2,  3;|
12   |            |                |  12,  5,  5, [2];|  12, [5], 5,  2;|
13   |            |                |  13,  7,  4, [1];|  13,  7,  4,  1;|
.    --------------------------------------------------------------------
Figure J: For n = 10 the partitions of 10 into consecutive parts are [10] and [4, 3, 2, 1]. These partitions have 1 and 4 consecutive parts respectively. On the other hand  we can find the mentioned partitions in the columns 1 and 4 of this table, starting at the row 10.
Illustration of initial terms arranged into the diagram of the triangle A237591:
.                                                           _
.                                                         _|1|
.                                                       _|2 _|
.                                                     _|3  |2|
.                                                   _|4   _|1|
.                                                 _|5    |3 _|
.                                               _|6     _|2|3|
.                                             _|7      |4  |2|
.                                           _|8       _|3 _|1|
.                                         _|9        |5  |4 _|
.                                       _|10        _|4  |3|4|
.                                     _|11         |6   _|2|3|
.                                   _|12          _|5  |5  |2|
.                                 _|13           |7    |4 _|1|
.                               _|14            _|6   _|3|5 _|
.                             _|15             |8    |6  |4|5|
.                           _|16              _|7    |5  |3|4|
.                         _|17               |9     _|4 _|2|3|
.                       _|18                _|8    |7  |6  |2|
.                     _|19                 |10     |6  |5 _|1|
.                   _|20                  _|9     _|5  |4|6 _|
.                 _|21                   |11     |8   _|3|5|6|
.               _|22                    _|10     |7  |7  |4|5|
.             _|23                     |12      _|6  |6  |3|4|
.           _|24                      _|11     |9    |5 _|2|3|
.         _|25                       |13       |8   _|4|7  |2|
.       _|26                        _|12      _|7  |8  |6 _|1|
.     _|27                         |14       |10   |7  |5|7 _|
.    |28                           |13       |9    |6  |4|6|7|
...
The number of horizontal line segments in the n-th row of the diagram equals A001227(n), the number of partitions of n into consecutive parts.
		

Crossrefs

Row n has length A003056(n).
The first element of column k is in row A000217(k).
For another version see A286001.

A211343 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the positive integers interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 2, 3, 1, 4, 0, 5, 2, 6, 0, 1, 7, 3, 0, 8, 0, 0, 9, 4, 2, 10, 0, 0, 1, 11, 5, 0, 0, 12, 0, 3, 0, 13, 6, 0, 0, 14, 0, 0, 2, 15, 7, 4, 0, 1, 16, 0, 0, 0, 0, 17, 8, 0, 0, 0, 18, 0, 5, 3, 0, 19, 9, 0, 0, 0, 20, 0, 0, 0, 2, 21, 10, 6, 0, 0, 1, 22, 0, 0, 4, 0, 0, 23, 11, 0, 0, 0, 0, 24, 0, 7, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Feb 05 2013

Keywords

Comments

The number of positive terms in row n is A001227(n).
If n = 2^j then the only positive integer in row n is T(n,1) = n
If n is an odd prime then the only two positive integers in row n are T(n,1) = n and T(n,2) = (n - 1)/2.
From Omar E. Pol, Apr 30 2017: (Start)
Conjecture 1: T(n,k) is the smallest part of the partition of n into k consecutive parts, if T(n,k) > 0.
Conjecture 2: the last positive integer in the row n is in the column A109814(n). (End)

Examples

			Triangle begins:
   1;
   2;
   3,  1;
   4,  0;
   5,  2;
   6,  0,  1;
   7,  3,  0;
   8,  0,  0;
   9,  4,  2;
  10,  0,  0,  1;
  11,  5,  0,  0;
  12,  0,  3,  0;
  13,  6,  0,  0;
  14,  0,  0,  2;
  15,  7,  4,  0,  1;
  16,  0,  0,  0,  0;
  17,  8,  0,  0,  0;
  18,  0,  5,  3,  0;
  19,  9,  0,  0,  0;
  20,  0,  0,  0,  2;
  21, 10,  6,  0,  0,  1;
  22,  0,  0,  4,  0,  0;
  23, 11,  0,  0,  0,  0;
  24,  0,  7,  0,  0,  0;
  25, 12,  0,  0,  3,  0;
  26,  0,  0,  5,  0,  0;
  27, 13,  8,  0,  0,  2;
  28,  0,  0,  0,  0,  0,  1;
  ...
In accordance with the conjectures, for n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. The smallest parts of these partitions are 15, 7, 4, 1, respectively, so the 15th row of the triangle is [15, 7, 4, 0, 1]. - _Omar E. Pol_, Apr 30 2017
		

Crossrefs

Columns 1-3: A000027, A027656, A175676.
Column k starts in row A000217(k).
Row n has length A003056(n).

Programs

  • Mathematica
    a196020[n_, k_]:=If[Divisible[n - k(k + 1)/2, k], 2n/k - k, 0]; T[n_, k_]:= Floor[(1 + a196020[n, k])/2]; Table[T[n, k], {n, 28}, {k, Floor[(Sqrt[8n+1]-1)/2]}] // Flatten (* Indranil Ghosh, Apr 30 2017 *)
  • Python
    from sympy import sqrt
    import math
    def a196020(n, k):return 2*n/k - k if (n - k*(k + 1)/2)%k == 0 else 0
    def T(n, k): return int((1 + a196020(n, k))/2)
    for n in range(1, 29): print([T(n, k) for k in range(1, int((sqrt(8*n + 1) - 1)/2) + 1)]) # Indranil Ghosh, Apr 30 2017

Formula

T(n,k) = floor((1 + A196020(n,k))/2).
T(n,k) = A237048(n,k)*A286001(n,k). - Omar E. Pol, Aug 13 2018

A141419 Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1

Views

Author

Roger L. Bagula, Aug 05 2008

Keywords

Comments

As a rectangle, the accumulation array of A051340.
From Clark Kimberling, Feb 05 2011: (Start)
Here all the weights are divided by two where they aren't in Cahn.
As a rectangle, A141419 is in the accumulation chain
... < A051340 < A141419 < A185874 < A185875 < A185876 < ...
(See A144112 for the definition of accumulation array.)
row 1: A000027
col 1: A000217
diag (1,5,...): A000326 (pentagonal numbers)
diag (2,7,...): A005449 (second pentagonal numbers)
diag (3,9,...): A045943 (triangular matchstick numbers)
diag (4,11,...): A115067
diag (5,13,...): A140090
diag (6,15,...): A140091
diag (7,17,...): A059845
diag (8,19,...): A140672
(End)
Let N=2*n+1 and k=1,2,...,n. Let A_{N,n-1} = [0,...,0,1; 0,...,0,1,1; ...; 0,1,...,1; 1,...,1], an n X n unit-primitive matrix (see [Jeffery]). Let M_n=[A_{N,n-1}]^4. Then t(n,k)=[M_n](1,k), that is, the n-th row of the triangle is given by the first row of M_n. - _L. Edson Jeffery, Nov 20 2011
Conjecture. Let N=2*n+1 and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (again see [Jeffery]) associated with N, and define the Chebyshev polynomials of the second kind by the recurrence U_0(x) = 1, U_1(x) = 2*x and U_r(x) = 2*x*U_(r-1)(x) - U_(r-2)(x) (r>1). Define the column vectors V_(k-1) = (U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where T denotes matrix transpose. Let S_N = [V_0, V_1, ..., V_(n-1)] be the n X n matrix formed by taking V_(k-1) as column k-1. Let X_N = [S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then t(n,k) = [X_N](k-1,k-1), and row n of the triangle is given by the main diagonal entries of X_N. Remarks: Hence t(n,k) is the sum of squares t(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]. Finally, this sequence is related to A057059, since X_N = [sum_{m=1,...,n} A057059(n,m)*A_{N,m-1}] is also an integral linear combination of unit-primitive matrices from the N-th set. - L. Edson Jeffery, Jan 20 2012
Row sums: n*(n+1)*(2*n+1)/6. - L. Edson Jeffery, Jan 25 2013
n-th row = partial sums of n-th row of A004736. - Reinhard Zumkeller, Aug 04 2014
T(n,k) is the number of distinct sums made by at most k elements in {1, 2, ... n}, for 1 <= k <= n, e.g., T(6,2) = the number of distinct sums made by at most 2 elements in {1,2,3,4,5,6}. The sums range from 1, to 5+6=11. So there are 11 distinct sums. - Derek Orr, Nov 26 2014
A number n occurs in this sequence A001227(n) times, the number of odd divisors of n, see A209260. - Hartmut F. W. Hoft, Apr 14 2016
Conjecture: 2*n + 1 is composite if and only if gcd(t(n,m),m) != 1, for some m. - L. Edson Jeffery, Jan 30 2018
From Peter Munn, Aug 21 2019 in respect of the sequence read as a triangle: (Start)
A number m can be found in column k if and only if A286013(m, k) is nonzero, in which case m occurs in column k on row A286013(m, k).
The first occurrence of m is in row A212652(m) column A109814(m), which is the rightmost column in which m occurs. This occurrence determines where m appears in A209260. The last occurrence of m is in row m column 1.
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A270877; this is the only one that contains its own row numbers only once.
(End)

Examples

			As a triangle:
   1,
   2,  3,
   3,  5,  6,
   4,  7,  9, 10,
   5,  9, 12, 14, 15,
   6, 11, 15, 18, 20, 21,
   7, 13, 18, 22, 25, 27, 28,
   8, 15, 21, 26, 30, 33, 35, 36,
   9, 17, 24, 30, 35, 39, 42, 44, 45,
  10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
   1   2   3   4   5   6   7   8   9  10
   3   5   7   9  11  13  15  17  19  21
   6   9  12  15  18  21  24  27  30  33
  10  14  18  22  26  30  34  38  42  46
  15  20  25  30  35  40  45  50  55  60
  21  27  33  39  45  51  57  63  69  75
  28  35  42  49  56  63  70  77  84  91
  36  44  52  60  68  76  84  92 100 108
  45  54  63  72  81  90  99 108 117 126
  55  65  75  85  95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Cf. A000330 (row sums), A004736, A057059, A070543.
A144112, A051340, A141419, A185874, A185875, A185876 are accumulation chain related.
A141418 is a variant.
Cf. A001227, A209260. - Hartmut F. W. Hoft, Apr 14 2016
A109814, A212652, A270877, A286013 relate to where each natural number appears in this sequence.
A000027, A000217, A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672 are rows, columns or diagonals - refer to comments.

Programs

  • Haskell
    a141419 n k =  k * (2 * n - k + 1) `div` 2
    a141419_row n = a141419_tabl !! (n-1)
    a141419_tabl = map (scanl1 (+)) a004736_tabl
    -- Reinhard Zumkeller, Aug 04 2014
  • Maple
    a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
  • Mathematica
    T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]

Formula

t(n,m) = m*(2*n - m + 1)/2.
t(n,m) = A000217(n) - A000217(n-m). - L. Edson Jeffery, Jan 16 2013
Let v = d*h with h odd be an integer factorization, then v = t(d+(h-1)/2, h) if h+1 <= 2*d, and v = t(d+(h-1)/2, 2*d) if h+1 > 2*d; see A209260. - Hartmut F. W. Hoft, Apr 14 2016
G.f.: y*(-x + y)/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 14 2018
T(n, 2) = A060747(n) for n > 1. T(n, 3) = A008585(n - 1) for n > 2. T(n, 4) = A016825(n - 2) for n > 3. T(n, 5) = A008587(n - 2) for n > 4. T(n, 6) = A016945(n - 3) for n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7.r n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7. T(n, 9) = A008591(n - 4) for n > 8. T(n, 10) = A017329(n - 5) for n > 9. T(n, 11) = A008593(n - 5) for n > 10. T(n, 12) = A017593(n - 6) for n > 11. T(n, 13) = A008595(n - 6) for n > 12. T(n, 14) = A147587(n - 7) for n > 13. T(n, 15) = A008597(n - 7) for n > 14. T(n, 16) = A051062(n - 8) for n > 15. T(n, 17) = A008599(n - 8) for n > 16. - Stefano Spezia, Oct 14 2018
T(2*n-k, k) = A070543(n, k). - Peter Munn, Aug 21 2019

Extensions

Simpler name by Stefano Spezia, Oct 14 2018

A286013 Irregular triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the positive integers starting with k, interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 2, 3, 2, 4, 0, 5, 3, 6, 0, 3, 7, 4, 0, 8, 0, 0, 9, 5, 4, 10, 0, 0, 4, 11, 6, 0, 0, 12, 0, 5, 0, 13, 7, 0, 0, 14, 0, 0, 5, 15, 8, 6, 0, 5, 16, 0, 0, 0, 0, 17, 9, 0, 0, 0, 18, 0, 7, 6, 0, 19, 10, 0, 0, 0, 20, 0, 0, 0, 6, 21, 11, 8, 0, 0, 6, 22, 0, 0, 7, 0, 0, 23, 12, 0, 0, 0, 0, 24, 0, 9, 0, 0, 0, 25, 13, 0, 0, 7, 0
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2017

Keywords

Comments

Conjecture 1: T(n,k) is the largest part of the partition of n into k consecutive parts, if T(n,k) > 0.
Conjecture 2: row sums give A286015.
Trapezoidal interpretation from Peter Munn, Jun 18 2017: (Start)
There is one to one correspondence between nonzero T(n,k) and trapezoidal area patterns of n dots on a triangular grid, if we include the limiting cases of triangular patterns, straight lines (k=1) or a single dot (k=n=1). The corresponding pattern has T(n,k) dots in its longest side, k dots in the two adjacent sides and T(n,k)-k+1 dots in the fourth side (where a count of 1 dot may be understood as signifying that side's absence).
Reason: From the definition, for k >= 1, m >= 0, T(A000217(k)+km,k) = k+m, where A000217(k) = k(k+1)/2, the k-th triangular number. First element of column k is T(A000217(k),k) = k: this matches a triangular pattern of A000217(k) dots with 3 sides of k dots. Looking at this pattern as k rows of 1..k dots, extend each row by m dots to create a trapezoidal pattern of A000217(k)+km dots with a longest side of k+m dots and adjacent sides of k dots: this matches T(A000217(k)+km,k) = k+m. As nonzero elements in column k occur at intervals of k, every nonzero T(n,k) has a match. Every trapezoidal pattern can be produced by extending a triangular pattern as described, so they all have a match.
The truth of conjecture 1 follows, since each nonzero T(n,k) = k+m corresponds to a trapezoidal pattern of n dots having k rows with lengths (1+m)..(k+m).
The A270877 sieve is related to this sequence because it eliminates n if it is the sum of consecutive numbers whose largest term has survived the sifting (which may likewise be seen in terms of a trapezoidal dot pattern and its longest side). So the sieve eliminates n if any lesser numbers in A270877 are in row n of this sequence.
(End)

Examples

			Triangle begins:
1;
2;
3,   2;
4,   0;
5,   3;
6,   0,  3;
7,   4,  0;
8,   0,  0;
9,   5,  4;
10,  0,  0,  4;
11,  6,  0,  0;
12,  0,  5,  0;
13,  7,  0,  0;
14,  0,  0,  5;
15,  8,  6,  0,  5;
16,  0,  0,  0,  0;
17,  9,  0,  0,  0;
18,  0,  7,  6,  0;
19, 10,  0,  0,  0;
20,  0,  0,  0,  6;
21, 11,  8,  0,  0,  6;
22,  0,  0,  7,  0,  0;
23, 12,  0,  0,  0,  0;
24,  0,  9,  0,  0,  0;
25, 13,  0,  0,  7,  0;
26,  0,  0,  8,  0,  0;
27, 14, 10,  0,  0,  7;
28,  0,  0,  0,  0,  0,  7;
...
In accordance with the conjecture, for n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. The largest parts are 15, 8, 6, 5, respectively, so the 15th row of the triangle is [15, 8, 6, 0, 5].
		

Crossrefs

Row n has length A003056(n).
Column k starts in row A000217(k).
The number of positive terms in row n is A001227(n), the number of partitions of n into consecutive parts.
The last positive term in row n is in column A109814(n).

Programs

  • Mathematica
    With[{n = 7}, DeleteCases[#, m_ /; m < 0] & /@ Transpose@ Table[Apply[Join @@ {ConstantArray[-1, #2 - 1], Array[(k + #/k) Boole[Mod[#, k] == 0] &, #1 - #2 + 1, 0]} &, # (# + 1)/2 & /@ {n, k}], {k, n}]] // Flatten (* Michael De Vlieger, Jul 21 2017 *)

Formula

For k >= 1, m >= 0, T(A000217(k)+km,k) = k+m. - Peter Munn, Jun 19 2017

A118235 Smallest positive number starting an interval of consecutive integers with element sum n.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 3, 8, 2, 1, 5, 3, 6, 2, 1, 16, 8, 3, 9, 2, 1, 4, 11, 7, 3, 5, 2, 1, 14, 4, 15, 32, 3, 7, 2, 1, 18, 8, 4, 6, 20, 3, 21, 2, 1, 10, 23, 15, 4, 8, 6, 3, 26, 2, 1, 5, 7, 13, 29, 4, 30, 14, 3, 64, 2, 1, 33, 5, 9, 7, 35, 4, 36, 17, 3, 6, 2, 1, 39, 14, 5, 19, 41, 7, 4, 20, 12, 3, 44, 2, 1, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 18 2006

Keywords

Comments

Right border of A299765. - Omar E. Pol, Jul 24 2018
In other words: a(n) is smallest part of the partitions of n into consecutive parts. - Omar E. Pol, Mar 12 2019

Examples

			a(3)=1 since 3 = 1+2; a(5)=2 since 5 = 2+3; a(6)=1 since 6 = 1+2+3; etc.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local j, k, s; j, k, s:= 1$3;
          while s<>n do
             if sAlois P. Heinz, Aug 05 2018
  • Mathematica
    a[n_] := Module[{j = 1, k = 1, s = 1}, While[True, If[s == n, Break[]]; If[s < n, k = k+1; s = s+k, s = s-j; j = j+1]]; j];
    Array[a, 100] (* Jean-François Alcover, Mar 12 2019, after Alois P. Heinz *)
  • PARI
    {a(n)=local(A=n);for(j=1,n,for(k=j,n+1,if(n==k*(k-1)/2-j*(j-1)/2,A=j;k=j=2*n+1)));A} /* Paul D. Hanna, Oct 28 2011 */

Formula

A109814(n) * (A109814(n) + 2*a(n) - 1) / 2 = n.
a(m) = n iff m = 2^k: a(A000079(n)) = A000079(n);
a(m) = 1 iff m = k*(k+1)/2: a(A000217(n)) = 1.
a(A002817(n-1)+1) = n; i.e., a(m) = n if m = k*(k-1)/2 + 1 and k = n*(n-1)/2 + 1. - Paul D. Hanna, Oct 28 2011
a(m) = 2 iff m = k*(k+3)/2: a(A000096(n)) = 2. - Bernard Schott, Mar 12 2019

A288529 a(n) is the minimum number of rows from the table described in A286000 that are required to represent the partitions of n into consecutive parts.

Original entry on oeis.org

1, 2, 4, 4, 6, 8, 8, 8, 11, 13, 12, 14, 14, 17, 19, 16, 18, 21, 20, 24, 26, 25, 24, 26, 29, 29, 32, 34, 30, 34, 32, 32, 38, 37, 41, 43, 38, 41, 44, 44, 42, 48, 44, 51, 53, 49, 48, 50, 55, 54, 56, 59, 54, 62, 64, 62, 62, 61, 60, 67, 62, 65, 71, 64, 74, 76, 68, 75, 74, 76, 72, 80, 74, 77, 84, 83, 87, 89, 80, 84, 89, 85
Offset: 1

Views

Author

Omar E. Pol, Jun 19 2017

Keywords

Comments

a(n) has the same definition related to the table A286001 which is another version of the table A286000.
First differs from A288772 at a(11), which shares infinitely many terms.

Examples

			Figures A..D show the evolution of the table of partitions into consecutive parts described in A286000, for n = 8..11:
.     ---------------------------------------------------------------------
Figure:      A            B                    C                  D
.     ---------------------------------------------------------------------
.    n:      8            9                   10                 11
Row   ---------------------------------------------------------------------
1     |  1;        |  1;             |   1;             |   1;            |
1     |  2;        |  2;             |   2;             |   2;            |
3     |  3,  2;    |  3,  2;         |   3,  2;         |   3,  2;        |
4     |  4,  1;    |  4,  1;         |   4,  1;         |   4,  1;        |
5     |  5,  3;    |  5,  3;         |   5,  3;         |   5,  3;        |
6     |  6,  2,  3;|  6,  2,  3;     |   6,  2,  3;     |   6,  2,  3;    |
7     |  7,  4,  2;|  7,  4,  2;     |   7,  4,  2;     |   7,  4,  2;    |
8     | [8], 3,  1;|  8,  3,  1;     |   8,  3,  1;     |   8,  3,  1;    |
9     |            | [9],[5],[4];    |   9,  5,  4;     |   9,  5,  4;    |
10    |            | 10, [4],[3],  4;| [10], 4,  3, [4];|  10,  4,  3;  4;|
11    |            | 11,  6, [2],  3;|  11,  6,  2; [3];| [11],[6], 2,  3;|
12    |            |                 |  12,  5,  5, [2];|  12, [5], 5,  2;|
13    |            |                 |  13,  7,  4, [1];|                 |
.     ---------------------------------------------------------------------
. a(n):      8              11                13                 12
.     ---------------------------------------------------------------------
For n = 8 we need a table with at least 8 rows, so a(8) = 8.
For n = 9 we need a table with at least 11 rows, so a(9) = 11.
For n = 10 we need a table with at least 13 rows, so a(10) = 13.
For n = 11 we need a table with at least 12 rows, so a(11) = 12.
		

Crossrefs

Formula

a(n) = A109814(n) + n - 1.

A288772 a(n) is the minimum number of rows from the table described in A286000 that are required to represent the partitions of all positive integers <= n into consecutive parts.

Original entry on oeis.org

1, 2, 4, 4, 6, 8, 8, 8, 11, 13, 13, 14, 14, 17, 19, 19, 19, 21, 21, 24, 26, 26, 26, 26, 29, 29, 32, 34, 34, 34, 34, 34, 38, 38, 41, 43, 43, 43, 44, 44, 44, 48, 48, 51, 53, 53, 53, 53, 55, 55, 56, 59, 59, 62, 64, 64, 64, 64, 64, 67, 67, 67, 71, 71, 74, 76, 76, 76, 76, 76, 76, 80, 80, 80, 84, 84, 87, 89, 89, 89, 89
Offset: 1

Views

Author

Omar E. Pol, Jun 17 2017

Keywords

Comments

a(n) has the same definition related to the table A286001 which is another version of the table A286000.
First differs from A288529 at a(11), which shares infinitely many terms.

Examples

			Figures A..D show the evolution of the table of partitions into consecutive parts described in A286000, for n = 8..11:
.     ---------------------------------------------------------------------
Figure:      A            B                    C                  D
.     ---------------------------------------------------------------------
.    n:      8            9                   10                 11
Row   ---------------------------------------------------------------------
1     |  1;        |  1;             |   1;             |   1;            |
1     |  2;        |  2;             |   2;             |   2;            |
3     |  3,  2;    |  3,  2;         |   3,  2;         |   3,  2;        |
4     |  4,  1;    |  4,  1;         |   4,  1;         |   4,  1;        |
5     |  5,  3;    |  5,  3;         |   5,  3;         |   5,  3;        |
6     |  6,  2,  3;|  6,  2,  3;     |   6,  2,  3;     |   6,  2,  3;    |
7     |  7,  4,  2;|  7,  4,  2;     |   7,  4,  2;     |   7,  4,  2;    |
8     | [8], 3,  1;|  8,  3,  1;     |   8,  3,  1;     |   8,  3,  1;    |
9     |            | [9],[5],[4];    |   9,  5,  4;     |   9,  5,  4;    |
10    |            | 10, [4],[3],  4;| [10], 4,  3, [4];|  10,  4,  3;  4;|
11    |            | 11,  6, [2],  3;|  11,  6,  2; [3];| [11],[6], 2,  3;|
12    |            |                 |  12,  5,  5, [2];|  12, [5], 5,  2;|
13    |            |                 |  13,  7,  4, [1];|  13,  7,  4,  1;|
.     ---------------------------------------------------------------------
. a(n):      8              11                13                 13
.     ---------------------------------------------------------------------
For n = 8 we need a table with at least 8 rows, so a(8) = 8.
For n = 9 we need a table with at least 11 rows, so a(9) = 11.
For n = 10 we need a table with at least 13 rows, so a(10) = 13.
For n = 11 we need a table with at least 13 rows, so a(11) = 13.
		

Crossrefs

A212652 a(n) is the least positive integer M such that n = T(M) - T(k), for k an integer, 0 <= k <= M, where T(r) = A000217(r) is the r-th triangular number.

Original entry on oeis.org

1, 2, 2, 4, 3, 3, 4, 8, 4, 4, 6, 5, 7, 5, 5, 16, 9, 6, 10, 6, 6, 7, 12, 9, 7, 8, 7, 7, 15, 8, 16, 32, 8, 10, 8, 8, 19, 11, 9, 10, 21, 9, 22, 9, 9, 13, 24, 17, 10, 12, 11, 10, 27, 10, 10, 11, 12, 16, 30, 11, 31, 17, 11, 64, 11, 11, 34
Offset: 1

Views

Author

L. Edson Jeffery, Feb 14 2013

Keywords

Comments

n = A000217(a(n)) - A000217(a(n) - A109814(n)).
Conjecture: n appears in row a(n) of A209260.
From Daniel Forgues, Jan 06 2016: (Start)
n = Sum_{i=k+1..M} i = T(M) - T(k) = (M-k)*(M+k+1)/2.
n = 2^m, m >= 0, iff M = n = 2^m and k = n - 1 = 2^m - 1. (Points on line with slope 1.) (Powers of 2 can't be the sum of consecutive numbers.)
n is odd prime iff k = M-2. Thus M = (n+1)/2 when n is odd prime. (Points on line with slope 1/2.) (Odd primes can't be the sum of more than 2 consecutive numbers.) (End)
If n = 2^m*p where p is an odd prime, then a(n) = 2^m + (p-1)/2. - Robert Israel, Jan 14 2016
This also expresses the following geometry: along a circle having (n) points on its circumference, a(n) expresses the minimum number of hops from a start point, in a given direction (CW or CCW), when each hop is increased by one, before returning to a visited point. For example, on a clock (n=12), starting at 12 (same as zero), the hops would lead to the points 1, 3, 6, 10 and then 3, which was already visited: 5 hops altogether, so a(12) = 5. - Joseph Rozhenko, Dec 25 2023
Conjecture: a(n) is the smallest of the largest parts of the partitions of n into consecutive parts. - Omar E. Pol, Jan 07 2025

Examples

			For n = 63, we have D(63) = {1,3,7,9,21,63}, B_63 = {11,12,13,22,32,63} and a(63) = min(11,12,13,22,32,63) = 11. Since A109814(63) = 9, T(11) - T(11-9) = T(11) - T(2) = 66 - 3 = 63.
		

Crossrefs

Programs

  • Maple
    f:= n ->  min(map(t -> n/t + (t-1)/2,
    numtheory:-divisors(n/2^padic:-ordp(n,2)))):
    map(f, [$1..100]); # Robert Israel, Jan 14 2016
  • Mathematica
    Table[Min[n/# + (# - 1)/2 &@ Select[Divisors@ n, OddQ]], {n, 67}] (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    { A212652(n) = my(m); m=2*n+1; fordiv(n/2^valuation(n,2), d, m=min(m,d+(2*n)\d)); (m-1)\2; } \\ Max Alekseyev, Mar 31 2008

Formula

a(n) = Min_{odd d|n} (n/d + (d-1)/2).
a(n) = A218621(n) + (n/A218621(n) - 1)/2.
a(n) = A109814(n) + A118235(n) - 1.

Extensions

Reference to Max Alekseyev's 2008 proposal of this sequence added by N. J. A. Sloane, Nov 01 2014
Showing 1-10 of 16 results. Next