cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A004736 Triangle read by rows: row n lists the first n positive integers in decreasing order.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Old name: Triangle T(n,k) = n-k, n >= 1, 0 <= k < n. Fractal sequence formed by repeatedly appending strings m, m-1, ..., 2, 1.
The PARI functions t1 (this sequence), t2 (A002260) can be used to read a square array T(n,k) (n >= 1, k >= 1) by antidiagonals upwards: n -> T(t1(n), t2(n)). - Michael Somos, Aug 23 2002, edited by M. F. Hasler, Mar 31 2020
A004736 is the mirror of the self-fission of the polynomial sequence (q(n,x)) given by q(n,x) = x^n+ x^(n-1) + ... + x + 1. See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011
Seen as flattened list: a(A000217(n)) = 1; a(A000124(n)) = n and a(m) <> n for m < A000124(n). - Reinhard Zumkeller, Jul 22 2012
Sequence B is called a reverse reluctant sequence of sequence A, if B is triangle array read by rows: row number k lists first k elements of the sequence A in reverse order. Sequence A004736 is the reverse reluctant sequence of sequence 1,2,3,... (A000027). - Boris Putievskiy, Dec 13 2012
The row sums equal A000217(n). The alternating row sums equal A004526(n+1). The antidiagonal sums equal A002620(n+1) respectively A008805(n-1). - Johannes W. Meijer, Sep 28 2013
From Peter Bala, Jul 29 2014: (Start)
Riordan array (1/(1-x)^2,x). Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the infinite matrix product M(0)*M(1)*M(2)*... is equal to A078812. (End)
T(n, k) gives the number of subsets of [n] := {1, 2, ..., n} with k consecutive numbers (consecutive k-subsets of [n]). - Wolfdieter Lang, May 30 2018
a(n) gives the distance from (n-1) to the smallest triangular number > (n-1). - Ctibor O. Zizka, Apr 09 2020
To construct the sequence, start from 1,2,,3,,,4,,,,5,,,,,6... where there are n commas after each "n". Then fill the empty places by the sequence itself. - Benoit Cloitre, Aug 17 2021
T(n,k) is the number of cycles of length 2*(k+1) in the (n+1)-ladder graph. There are no cycles of odd length. - Mohammed Yaseen, Jan 14 2023
The first 77 entries are also the signature sequence of log(3)=A002391. Then the two sequences start to differ. - R. J. Mathar, May 27 2024

Examples

			The triangle T(n, k) starts:
   n\k  1  2  3  4  5  6  7  8  9 10 11 12 ...
   1:   1
   2:   2  1
   3:   3  2  1
   4:   4  3  2  1
   5:   5  4  3  2  1
   6:   6  5  4  3  2  1
   7:   7  6  5  4  3  2  1
   8:   8  7  6  5  4  3  2  1
   9:   9  8  7  6  5  4  3  2  1
  10:  10  9  8  7  6  5  4  3  2  1
  11:  11 10  9  8  7  6  5  4  3  2  1
  12:  12 11 10  9  8  7  6  5  4  3  2  1
  ... Reformatted. - _Wolfdieter Lang_, Feb 04 2015
T(6, 3) = 4 because the four consecutive 3-subsets of [6] = {1, 2, ..., 6} are {1, 2, 3}, {2, 3, 4}, {3, 4, 5} and {4, 5, 6}. - _Wolfdieter Lang_, May 30 2018
		

References

  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp 159-162.

Crossrefs

Ordinal transform of A002260. See also A078812.
Cf. A141419 (partial sums per row).
Cf. A134546 (T * A051731, matrix product).
See A001511 for definition of ordinal transform.
Cf. A128174 (parity).

Programs

  • Excel
    =if(row()>=column();row()-column()+1;"") [Mats Granvik, Jan 19 2009]
    
  • Haskell
    a004736 n k = n - k + 1
    a004736_row n = a004736_tabl !! (n-1)
    a004736_tabl = map reverse a002260_tabl
    -- Reinhard Zumkeller, Aug 04 2014, Jul 22 2012
    
  • Maple
    A004736 := proc(n,m) n-m+1 ; end:
    T := (n, k) -> n-k+1: seq(seq(T(n,k), k=1..n), n=1..13); # Johannes W. Meijer, Sep 28 2013
  • Mathematica
    Flatten[ Table[ Reverse[ Range[n]], {n, 12}]] (* Robert G. Wilson v, Apr 27 2004 *)
    Table[Range[n,1,-1],{n,20}]//Flatten (* Harvey P. Dale, May 27 2020 *)
  • PARI
    {a(n) = 1 + binomial(1 + floor(1/2 + sqrt(2*n)), 2) - n}
    
  • PARI
    {t1(n) = binomial( floor(3/2 + sqrt(2*n)), 2) - n + 1} /* A004736 */
    
  • PARI
    {t2(n) = n - binomial( floor(1/2 + sqrt(2*n)), 2)} /* A002260 */
    
  • PARI
    apply( A004736(n)=1-n+(n=sqrtint(8*n)\/2)*(n+1)\2, [1..99]) \\ M. F. Hasler, Mar 31 2020
    
  • Python
    def agen(rows):
        for n in range(1, rows+1): yield from range(n, 0, -1)
    print([an for an in agen(13)]) # Michael S. Branicky, Aug 17 2021
    
  • Python
    from math import comb, isqrt
    def A004736(n): return comb((m:=isqrt(k:=n<<1))+(k>m*(m+1))+1,2)+1-n # Chai Wah Wu, Nov 08 2024

Formula

a(n+1) = 1 + A025581(n).
a(n) = (2 - 2*n + round(sqrt(2*n)) + round(sqrt(2*n))^2)/2. - Brian Tenneson, Oct 11 2003
G.f.: 1 / ((1-x)^2 * (1-x*y)). - Ralf Stephan, Jan 23 2005
Recursion: e(n,k) = (e(n - 1, k)*e(n, k - 1) + 1)/e(n - 1, k - 1). - Roger L. Bagula, Mar 25 2009
a(n) = (t*t+3*t+4)/2-n, where t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012
From Johannes W. Meijer, Sep 28 2013: (Start)
T(n, k) = n - k + 1, n >= 1 and 1 <= k <= n.
T(n, k) = A002260(n+k-1, n-k+1). (End)
a(n) = A000217(A002024(n)) - n + 1. - Enrique Pérez Herrero, Aug 29 2016

Extensions

New name from Omar E. Pol, Jul 15 2012

A051340 A simple 2-dimensional array, read by antidiagonals: T[i,j] = 1 for j>0, T[i,0] = i+1; i,j = 0,1,2,3,...

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 0

Views

Author

Keywords

Comments

Warning: contributions from Kimberling refer to an alternate version indexed by 1 instead of 0. Other contributors (Adamson in A125026/A130301/A130295) refer to this considering the upper right triangle set to zero, T[i,j]=0 for j>i. - M. F. Hasler, Aug 15 2015
From Clark Kimberling, Feb 05 2011: (Start)
A member of the accumulation chain:
... < A051340 < A141419 < A185874 < A185875 < A185876 < ...
(See A144112 for the definition of accumulation array.)
In the m-th accumulation array of A051340,
row_1 = C(m,1) and column_1 = C(1,m+1), for m>=0. (End)

Examples

			Northwest corner:
  1...1...1...1...1...1...1
  2...1...1...1...1...1...1
  3...1...1...1...1...1...1
  4...1...1...1...1...1...1
  5...1...1...1...1...1...1
  6...1...1...1...1...1...1
The Mathematica code shows that the weight array of this array (i.e., the array of which this array is the accumulation array), has northwest corner
  1....0...0...0...0...0...0
  1...-1...0...0...0...0...0
  1...-1...0...0...0...0...0
  1...-1...0...0...0...0...0
  1...-1...0...0...0...0...0. - _Clark Kimberling_, Feb 05 2011
		

Crossrefs

Programs

  • Magma
    [k eq n select n+1 else 1: k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 18 2023
    
  • Maple
    A051340 := proc(n, k) if k=0 then n+1; else 1; end if; end proc: # R. J. Mathar, Jul 16 2015
  • Mathematica
    (* This program generates A051340, then its accumulation array A141419, then its weight array described under Example. *)
    f[n_,0]:=0; f[0,k_]:=0;  (* needed for the weight array *)
    f[n_,1]:=n; f[n_,k_]:=1/;k>1;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A051340 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A141419 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0];
    TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* weight array *)
    Table[w[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten (* Clark Kimberling, Feb 05 2011 *)
    f[n_] := Join[ Table[1, {n - 1}], {n}]; Array[ f, 14] // Flatten (* Robert G. Wilson v, Mar 04 2012 *)
    Table[PadLeft[{n},n,1],{n,15}]//Flatten (* Harvey P. Dale, Jun 17 2025 *)
  • Python
    from math import comb, isqrt
    def A051340(n):
        a = (m:=isqrt(k:=n+2<<1))+(k>m*(m+1))
        return 1 if n-comb(a,2)+1 else a-1 # Chai Wah Wu, Jun 21 2025
  • SageMath
    def A051340(n,k): return n+1 if (k==n) else 1
    flatten([[A051340(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Mar 18 2023
    

Formula

For n>0, a(n(n+3)/2)=n+1, and if k is not of the form n*(n+3)/2, then a(k)=1. - Benoit Cloitre, Oct 31 2002, corrected by M. F. Hasler, Aug 15 2015
T(n,0) = n+1 and T(n,k) = 1 if k >= 0, for n >= 0. - Clark Kimberling, Feb 05 2011

Extensions

Edited by M. F. Hasler, Aug 15 2015

A109814 a(n) is the largest k such that n can be written as sum of k consecutive positive integers.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 3, 4, 2, 3, 2, 4, 5, 1, 2, 4, 2, 5, 6, 4, 2, 3, 5, 4, 6, 7, 2, 5, 2, 1, 6, 4, 7, 8, 2, 4, 6, 5, 2, 7, 2, 8, 9, 4, 2, 3, 7, 5, 6, 8, 2, 9, 10, 7, 6, 4, 2, 8, 2, 4, 9, 1, 10, 11, 2, 8, 6, 7, 2, 9, 2, 4, 10, 8, 11, 12, 2, 5, 9, 4, 2, 8, 10, 4, 6, 11, 2, 12, 13, 8, 6, 4, 10, 3, 2, 7, 11, 8, 2, 12
Offset: 1

Views

Author

Keywords

Comments

n is the sum of at most a(n) consecutive positive integers. As suggested by David W. Wilson, Aug 15 2005: Suppose n is to be written as sum of k consecutive integers starting with m, then 2n = k(2m + k - 1). Only one of the factors is odd. For each odd divisor d of n there is a unique corresponding k = min(d,2n/d). a(n) is the largest among those k. - Jaap Spies, Aug 16 2005
The numbers that can be written as a sum of k consecutive positive integers are those in column k of A141419 (as a triangle). - Peter Munn, Mar 01 2019
The numbers that cannot be written as a sum of two or more consecutive positive integers are the powers of 2. So a(n) = 1 iff n = 2^k for k >= 0. - Bernard Schott, Mar 03 2019

Examples

			Examples provided by _Rainer Rosenthal_, Apr 01 2008:
1 = 1     ---> a(1) = 1
2 = 2     ---> a(2) = 1
3 = 1+2   ---> a(3) = 2
4 = 4     ---> a(4) = 1
5 = 2+3   ---> a(5) = 2
6 = 1+2+3 ---> a(6) = 3
a(15) = 5: 15 = 15 (k=1), 15 = 7+8 (k=2), 15 = 4+5+6 (k=3) and 15 = 1+2+3+4+5 (k=5). - _Jaap Spies_, Aug 16 2005
		

Crossrefs

Cf. A000079 (powers of 2), A000217 (triangular numbers).

Programs

  • Maple
    A109814:= proc(n) local m, k, d; m := 0; for d from 1 by 2 to n do if n mod d = 0 then k := min(d, 2*n/d): fi; if k > m then m := k fi: od; return(m); end proc; seq(A109814(i),i=1..150); # Jaap Spies, Aug 16 2005
  • Mathematica
    a[n_] := Reap[Do[If[OddQ[d], Sow[Min[d, 2n/d]]], {d, Divisors[n]}]][[2, 1]] // Max; Table[a[n], {n, 1, 102}]
  • Python
    from sympy import divisors
    def a(n): return max(min(d, 2*n//d) for d in divisors(n) if d&1)
    print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Dec 23 2022
  • Sage
    [sloane.A109814(n) for n in range(1,20)]
    # Jaap Spies, Aug 16 2005
    

Formula

From Reinhard Zumkeller, Apr 18 2006: (Start)
a(n)*(a(n)+2*A118235(n)-1)/2 = n;
a(A000079(n)) = 1;
a(A000217(n)) = n. (End)

Extensions

Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar

A075362 Triangle read by rows with the n-th row containing the first n multiples of n.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 4, 8, 12, 16, 5, 10, 15, 20, 25, 6, 12, 18, 24, 30, 36, 7, 14, 21, 28, 35, 42, 49, 8, 16, 24, 32, 40, 48, 56, 64, 9, 18, 27, 36, 45, 54, 63, 72, 81, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 12, 24, 36, 48, 60, 72, 84
Offset: 1

Views

Author

Amarnath Murthy, Sep 20 2002

Keywords

Comments

(Conjecture) Let N=2*n and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (see [Jeffery]) associated with N. Define the Chebyshev polynomials of the second kind by the recurrence U_0(x)=1, U_1(x)=2*x and U_r(x)=2*x*U_(r-1)(x)-U_(r-2)(x) (r>1). Define the column vectors V_(k-1)=(U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where B^T denotes the transpose of matrix B. Let S_N=[V_0,V_1,...,V_(n-1)] be the n X n matrix formed by taking the components of vector V_(k-1) as the entries in column k-1 (V_(k-1) gives the ordered spectrum of A_{N,k-1}). Let X_N=[S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then also T(n,k)=[X_N](k-1,k-1); that is, row n of the triangle is given by the main diagonal entries of X_N. Hence T(n,k) is the sum of squares T(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]=[V_(k-1)]^T*V_(k-1). - L. Edson Jeffery, Jan 20 2012
Conjecture that antidiagonal sums are A023855. - L. Edson Jeffery, Jan 20 2012
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A066680 U {1}; this is the only one that contains its own row numbers only once. - Peter Munn, Dec 04 2019

Examples

			Triangle begins:
  1;
  2,  4;
  3,  6,  9;
  4,  8, 12, 16;
  5, 10, 15, 20, 25;
  6, 12, 18, 24, 30, 36;
		

Crossrefs

A002411 gives the sum of the n-th row. A141419 is similarly derived.
Cf. A003991 (square multiplication table).
Main diagonal gives A000290.

Programs

  • Haskell
    a075362 n k = a075362_tabl !! (n-1) !! (k-1)
    a075362_row n = a075362_tabl !! (n-1)
    a075362_tabl = zipWith (zipWith (*)) a002260_tabl a002024_tabl
    -- Reinhard Zumkeller, Nov 11 2012, Oct 04 2012
  • Maple
    T(n,k):=piecewise(k<=n,sum(i*binomial(k,i)*binomial(n+1-k,n-i),i=1..k),k>n,0) # Mircea Merca, Apr 11 2012
  • Mathematica
    Table[NestList[n+#&,n,n-1],{n,15}]//Flatten (* Harvey P. Dale, Jun 14 2022 *)

Formula

T(n,k) = n*k, 1 <= k <= n. - Reinhard Zumkeller, Mar 07 2010
T(n,k) = A050873(n,k)*A051173(n,k), 1 <= k <= n. - Reinhard Zumkeller, Apr 25 2011
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+1-k,n-i), 1 <= k <= n. - Mircea Merca, Apr 11 2012
T(n,k) = A002260(n,k)*A002024(n,k) = (A215630(n,k)-A215631(n,k))/2, 1 <= k <= n. - Reinhard Zumkeller, Nov 11 2012
a(n) = A223544(n) - 1; a(n) = i*(t+1), where i = n - t*(t+1)/2, t = floor((-1 + sqrt(8*n-7))/2). - Boris Putievskiy, Jul 24 2013

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003

A212652 a(n) is the least positive integer M such that n = T(M) - T(k), for k an integer, 0 <= k <= M, where T(r) = A000217(r) is the r-th triangular number.

Original entry on oeis.org

1, 2, 2, 4, 3, 3, 4, 8, 4, 4, 6, 5, 7, 5, 5, 16, 9, 6, 10, 6, 6, 7, 12, 9, 7, 8, 7, 7, 15, 8, 16, 32, 8, 10, 8, 8, 19, 11, 9, 10, 21, 9, 22, 9, 9, 13, 24, 17, 10, 12, 11, 10, 27, 10, 10, 11, 12, 16, 30, 11, 31, 17, 11, 64, 11, 11, 34
Offset: 1

Views

Author

L. Edson Jeffery, Feb 14 2013

Keywords

Comments

n = A000217(a(n)) - A000217(a(n) - A109814(n)).
Conjecture: n appears in row a(n) of A209260.
From Daniel Forgues, Jan 06 2016: (Start)
n = Sum_{i=k+1..M} i = T(M) - T(k) = (M-k)*(M+k+1)/2.
n = 2^m, m >= 0, iff M = n = 2^m and k = n - 1 = 2^m - 1. (Points on line with slope 1.) (Powers of 2 can't be the sum of consecutive numbers.)
n is odd prime iff k = M-2. Thus M = (n+1)/2 when n is odd prime. (Points on line with slope 1/2.) (Odd primes can't be the sum of more than 2 consecutive numbers.) (End)
If n = 2^m*p where p is an odd prime, then a(n) = 2^m + (p-1)/2. - Robert Israel, Jan 14 2016
This also expresses the following geometry: along a circle having (n) points on its circumference, a(n) expresses the minimum number of hops from a start point, in a given direction (CW or CCW), when each hop is increased by one, before returning to a visited point. For example, on a clock (n=12), starting at 12 (same as zero), the hops would lead to the points 1, 3, 6, 10 and then 3, which was already visited: 5 hops altogether, so a(12) = 5. - Joseph Rozhenko, Dec 25 2023
Conjecture: a(n) is the smallest of the largest parts of the partitions of n into consecutive parts. - Omar E. Pol, Jan 07 2025

Examples

			For n = 63, we have D(63) = {1,3,7,9,21,63}, B_63 = {11,12,13,22,32,63} and a(63) = min(11,12,13,22,32,63) = 11. Since A109814(63) = 9, T(11) - T(11-9) = T(11) - T(2) = 66 - 3 = 63.
		

Crossrefs

Programs

  • Maple
    f:= n ->  min(map(t -> n/t + (t-1)/2,
    numtheory:-divisors(n/2^padic:-ordp(n,2)))):
    map(f, [$1..100]); # Robert Israel, Jan 14 2016
  • Mathematica
    Table[Min[n/# + (# - 1)/2 &@ Select[Divisors@ n, OddQ]], {n, 67}] (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    { A212652(n) = my(m); m=2*n+1; fordiv(n/2^valuation(n,2), d, m=min(m,d+(2*n)\d)); (m-1)\2; } \\ Max Alekseyev, Mar 31 2008

Formula

a(n) = Min_{odd d|n} (n/d + (d-1)/2).
a(n) = A218621(n) + (n/A218621(n) - 1)/2.
a(n) = A109814(n) + A118235(n) - 1.

Extensions

Reference to Max Alekseyev's 2008 proposal of this sequence added by N. J. A. Sloane, Nov 01 2014

A185874 Second accumulation array of A051340, by antidiagonals.

Original entry on oeis.org

1, 3, 4, 6, 11, 10, 10, 21, 26, 20, 15, 34, 48, 50, 35, 21, 50, 76, 90, 85, 56, 28, 69, 110, 140, 150, 133, 84, 36, 91, 150, 200, 230, 231, 196, 120, 45, 116, 196, 270, 325, 350, 336, 276, 165, 55, 144, 248, 350, 435, 490, 504, 468, 375, 220, 66, 175, 306, 440, 560, 651, 700, 696, 630, 495, 286, 78, 209, 370, 540, 700, 833, 924, 960, 930, 825, 638, 364, 91, 246, 440, 650, 855, 1036, 1176, 1260, 1275, 1210, 1056, 806, 455, 105, 286, 516, 770, 1025, 1260, 1456, 1596, 1665, 1650, 1540, 1326, 1001, 560
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain: A051340 < A141419 < A185874 < A185875 < A185876 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
.   1,   3,   6,   10,   15,   21,   28,   36,   45,   55, ...
.   4,  11,  21,   34,   50,   69,   91,  116,  144,  175, ...
.  10,  26,  48,   76,  110,  150,  196,  248,  306,  370, ...
.  20,  50,  90,  140,  200,  270,  350,  440,  540,  650, ...
.  35,  85, 150,  230,  325,  435,  560,  700,  855, 1025, ...
.  56, 133, 231,  350,  490,  651,  833, 1036, 1260, 1505, ...
.  84, 196, 336,  504,  700,  924, 1176, 1456, 1764, 2100, ...
. 120, 276, 468,  696,  960, 1260, 1596, 1968, 2376, 2820, ...
. 165, 375, 630,  930, 1275, 1665, 2100, 2580, 3105, 3675, ...
. 220, 495, 825, 1210, 1650, 2145, 2695, 3300, 3960, 4675, ...
...
		

Crossrefs

Row 1 to 5: A000217, A115056, 2*A140096, 10*A000096, 5*A059845.
Column 1 to 3: A000292, A051925, A267370 and 3*A005581.
Main diagonal: A117066.

Programs

  • Mathematica
    f[n_, k_] := (1/12)*k*n*(1 + n)*(1 + 3*k + 2*n);
    TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]
    Table[f[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten

Formula

T(n,k) = k*n*(n+1)*(2*n+3*k+1)/12 for k>=1, n>=1.

Extensions

Edited by Bruno Berselli, Jan 14 2016

A141418 Triangle read by rows: T(n,k) = k * (2*n - k - 1) / 2, 1 <= k <= n.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 3, 5, 6, 6, 4, 7, 9, 10, 10, 5, 9, 12, 14, 15, 15, 6, 11, 15, 18, 20, 21, 21, 7, 13, 18, 22, 25, 27, 28, 28, 8, 15, 21, 26, 30, 33, 35, 36, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 45
Offset: 1

Views

Author

Roger L. Bagula, Aug 05 2008

Keywords

Comments

From Reinhard Zumkeller, Aug 04 2014: (Start)
n-th row = half of Dynkin diagram weights for the Cartan Groups D_n.
n-th row = partial sums of n-th row of A025581. (End)

Examples

			Triangle begins as:
  0;
  1,  1;
  2,  3,  3;
  3,  5,  6,  6;
  4,  7,  9, 10, 10;
  5,  9, 12, 14, 15, 15;
  6, 11, 15, 18, 20, 21, 21;
  7, 13, 18, 22, 25, 27, 28, 28;
  8, 15, 21, 26, 30, 33, 35, 36, 36;
  9, 17, 24, 30, 35, 39, 42, 44, 45, 45;
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Programs

  • Haskell
    a141418 n k = k * (2 * n - k - 1) `div` 2
    a141418_row n = a141418_tabl !! (n-1)
    a141418_tabl = map (scanl1 (+)) a025581_tabl
    -- Reinhard Zumkeller, Aug 04 2014, Nov 18 2012
    
  • Magma
    [k*(2*n-k-1)/2: k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 30 2021
    
  • Maple
    A141418:= (n,k)-> k*(2*n-k-1)/2; seq(seq(A141418(n,k), k=1..n), n=1..12); # G. C. Greubel, Mar 30 2021
  • Mathematica
    T[n_, k_]= k*(2*n-k-1)/2; Table[T[n, k], {n,12}, {k,n}]//Flatten
  • Sage
    flatten([[k*(2*n-k-1)/2 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 30 2021

Formula

T(n, K) = k*(2*n - k - 1)/2.
Sum_{k=1..n} T(n, k) = 2*binomial(n+1, 3) = A007290(n+1). - Reinhard Zumkeller, Aug 04 2014

Extensions

Edited by Reinhard Zumkeller, Nov 18 2012

A185875 Third accumulation array of A051340, by antidiagonals.

Original entry on oeis.org

1, 4, 5, 10, 19, 15, 20, 46, 55, 35, 35, 90, 130, 125, 70, 56, 155, 250, 290, 245, 126, 84, 245, 425, 550, 560, 434, 210, 120, 364, 665, 925, 1050, 980, 714, 330, 165, 516, 980, 1435, 1750, 1820, 1596, 1110, 495, 220, 705, 1380, 2100, 2695, 3010, 2940, 2460, 1650, 715, 286, 935, 1875, 2940, 3920, 4606, 4830, 4500, 3630, 2365, 1001, 364, 1210, 2475, 3975, 5460, 6664, 7350, 7350, 6600, 5170
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain A051340 < A141419 < A185874 < A185875 < A185876 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
   1,   4,  10,  20,  35
   5,  19,  46,  90, 155
  15,  55, 130, 250, 425
  35, 125, 290, 550, 925
		

Crossrefs

Row 1: A000292; Column 1: A000332.

Programs

  • Mathematica
    f[n_,k_]:= k*(1+k)*n*(1+n)*(2+n)*(5+4*k+3*n)/144;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = (3*n+4*k+5)*C(k,2)*C(n,3)/12, k>=1, n>=1.

A185876 Fourth accumulation array of A051340, by antidiagonals.

Original entry on oeis.org

1, 5, 6, 15, 29, 21, 35, 85, 99, 56, 70, 195, 285, 259, 126, 126, 385, 645, 735, 574, 252, 210, 686, 1260, 1645, 1610, 1134, 462, 330, 1134, 2226, 3185, 3570, 3150, 2058, 792, 495, 1770, 3654, 5586, 6860, 6930, 5670, 3498, 1287, 715, 2640, 5670, 9114, 11956, 13230, 12390, 9570, 5643, 2002, 1001, 3795, 8415, 14070
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain A051340 < A141419 < A185874 < A185875 < A185876 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
   1,   5,  15,   35,   70
   6,  29,  85,  195,  385
  21,  99, 285,  645, 1260
  56, 259, 735, 1645, 3185
		

Crossrefs

Row 1: A000332, column 1: A000389.

Programs

  • Mathematica
    f[n_,k_]:=k(1+k)n(1+n)(2+n)(5+4k+3n)/144;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185875 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    Factor[s[n,k]]  (* formula for A185876 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185876 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = (4*n+5*k+11)*C(k+2,3)*C(n+4,4)/20, k>=1, n>=1.

A209260 Irregular triangular array read by rows, resulting in a permutation of the natural numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 4, 7, 9, 10, 12, 14, 15, 11, 18, 20, 21, 13, 22, 25, 27, 28, 8, 26, 30, 33, 35, 36, 17, 24, 39, 42, 44, 45, 19, 34, 40, 49, 52, 54, 55, 38, 51, 56, 60, 63, 65, 66, 23, 50, 57, 68, 72, 75, 77, 78
Offset: 1

Views

Author

Keywords

Comments

One way to derive this sequence row by row is by eliminating from row n of A141419 any integer already present in row m < n of A141419, with the remaining entries comprising row n of this triangle. The resulting irregular triangle then begins as {1}; {2, 3}; {5, 6}; {4, 7, 9, 10}; ... (see the examples below).
If 2*n+1 is a prime, then 2*n+1 appears in row n+1.
Conjecture 1. 2*n+1 is in the set S_n = {union of first n rows of A209260} if and only if 2*n+1 is composite. (Verified for all n <= 10^6 by Charles R Greathouse IV.) This conjecture has been proved (see [Jeffery]).
Conjecture 2. Let N be an integer, N>0, and let D_N be the set of all positive integral divisors of N. Let B_N be the set of all integral solutions of d + (h-1)/2 for which d in D_N, with h=N/d and N=d*h (some solutions will not be integers and so are not in B_N). Then N appears in row r = min(B_N) of A209260. Also, N appears in row b of A141419, for each b in B_N. - L. Edson Jeffery, Feb 13 2013
From Hartmut F. W. Hoft, Apr 14 2016: (Start)
For a proof of Conjecture 2 see the link.
The row-column index pair in A141419 for number v having factorization v = d*h with h odd is: (d+(h-1)/2, h) if h+1 <= 2*d, and (d+(h-1)/2, 2*d) if h+1 > 2*d. The position of number v in this triangle occurs for the minimum value of d+(h-1)/2 among all divisor pairs d,h with v = d*h and h odd. (End)

Examples

			As an irregular triangle:
  {1};
  {2, 3};
  {5, 6};
  {4, 7, 9, 10};
  {12, 14, 15};
  {11, 18, 20, 21};
  {13, 22, 25, 27, 28};
  {8, 26, 30, 33, 35, 36};
  {17, 24, 39, 42, 44, 45};
  {19, 34, 40, 49, 52, 54, 55};
  {38, 51, 56, 60, 63, 65, 66};
  {23, 50, 57, 68, 72, 75, 77, 78};
and as the terms appear in their correct positions in A141419:
  {1                                            };
  {2,  3                                        };
  {    5,  6                                    };
  {4,  7,  9, 10                                };
  {       12, 14, 15                            };
  {   11,     18, 20, 21                        };
  {   13,     22, 25, 27, 28                    };
  {8,         26, 30, 33, 35, 36                };
  {   17, 24,         39, 42, 44, 45            };
  {   19,     34, 40,     49, 52, 54, 55        };
  {           38,     51, 56, 60, 63, 65, 66    };
  {   23,         50, 57,     68, 72, 75, 77, 78};
The row-column index pair for a hole in the triangle can be computed from the expressions in the Formula section and the triangle produced with the Mathematica code. - _Hartmut F. W. Hoft_, Apr 14 2016
		

Crossrefs

Cf. A141419.

Programs

  • Mathematica
    oddDivs[v_] := Module[{d=Divisors[v]}, Select[Transpose[{d, Reverse[d]}], OddQ[#[[2]]]&]]
    holes[v_] := Drop[Sort[Map[{#[[1]]+(#[[2]]-1)/2, If[#[[2]]+1<=2*#[[1]], #[[2]], 2*#[[1]]]}&, oddDivs[v]], #1[[1]]<#2[[1]]&], 1]
    a141419[i_, j_] := j*(2*i-j+1)/2
    triangle141419[r_] := Table[a141419[i, j], {i, 1, r}, {j, 1, i}]
    holes209260[r_] := Select[Flatten[Map[holes, Union[Flatten[triangle141419[r]]]], 1], #[[1]]<=r&]
    triangle209260[r_] := Module[{rT=triangle141419[r], rH=holes209260[r], k, i, j}, For[k=1, k<=Length[rH], k++, {i, j}=rH[[k]]; rT[[i, j]]=" "]; rT]
    a209260[r_] := Select[Flatten[triangle209260[r]], #!=" "&]
    a209260[12] (* data *)
    TableForm[triangle209260[12], TableDepth->2] (* triangle with holes *)
    (* Hartmut F. W. Hoft, Apr 14 2016 *)
  • PARI
    try(p)={ \\ Test conjecture at prime p
        my(n=p\2);
        my(v=vectorsmall(n,i,i),v1=vectorsmall(n-1,i,2*i+1));
        while(1,
            my(t=#v1-1);
            while(t && v1[t]>p, t--);
            if(t<1,return(0));
            [v1,v]=[vectorsmall(t,i,v1[i]+v1[i+1]-v[i+1]),v1];
            for(i=1,#v1,
                if(v1[i]==p && isprime(p),return("Conjecture fails at "p))
            )
        )
    }; \\ Charles R Greathouse IV, Jan 23 2013
Showing 1-10 of 16 results. Next