cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A254605 The minimum absolute difference between k*m1 and m2 (m1A075362.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 1, 0, 2, 2, 1, 0, 0, 1, 0, 1, 1, 3, 2, 1, 0, 0, 0, 1, 2, 0, 2, 3, 2, 1, 0, 0, 1, 1, 1, 1, 1, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 2, 4, 3, 2, 1, 0, 0, 1, 1, 1, 2, 1, 1, 3, 4
Offset: 1

Views

Author

Lei Zhou, Feb 02 2015

Keywords

Comments

k is an integer that minimizes |k*m1-m2|. It is trivial that if j is the integer part of m2/m1, k is either j or j+1.
Interestingly, suppose b is the smallest n such that a(n)=c; the sequence s(c)=b is then sequence A022267.

Examples

			A075362(1)=1=1*1, 1-1=0, so a(1)=0;
A075362(5)=6=2*3, 3-2=1, 2*2-3=1, so a(5)=1;
A075362(19)=24=4*6, 6-4=2, 4*2-6=2, so a(19)=2.
		

Crossrefs

Programs

  • Mathematica
    NumDiff[n1_, n2_] :=  Module[{c1 = n1, c2 = n2}, If[c1 < c2, c1 = c1 + c2; c2 = c1 - c2; c1 = c1 - c2];
      k = Floor[c1/c2]; a1 = c1 - k*c2; If[a1 == 0, a2 = 0, a2 = (k + 1) c2 - c1]; Return[Min[a1, a2]]];
    p1 = 1; p2 = 0; Table[p2++; If[p2 > p1, p1 = p2; p2 = 1];  NumDiff[p1, p2], {n, 1, 100}]

A050873 Triangular array T read by rows: T(n,k) = gcd(n,k).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 1, 1, 1, 1, 5, 1, 2, 3, 2, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The function T(n,k) = T(k,n) is defined for all integer k,n but only the values for 1 <= k <= n as a triangular array are listed here.
For each divisor d of n, the number of d's in row n is phi(n/d). Furthermore, if {a_1, a_2, ..., a_phi(n/d)} is the set of positive integers <= n/d that are relatively prime to n/d then T(n,a_i * d) = d. - Geoffrey Critzer, Feb 22 2015
Starting with any row n and working downwards, consider the infinite rectangular array with k = 1..n. A repeating pattern occurs every A003418(n) rows. For example, n=3: A003418(3) = 6. The 6-row pattern starting with row 3 is {1,1,3}, {1,2,1}, {1,1,1}, {1,2,3}, {1,1,1}, {1,2,1}, and this pattern repeats every 6 rows, i.e., starting with rows {9,15,21,27,...}. - Bob Selcoe and Jamie Morken, Aug 02 2017

Examples

			Rows:
  1;
  1, 2;
  1, 1, 3;
  1, 2, 1, 4;
  1, 1, 1, 1, 5;
  1, 2, 3, 2, 1, 6; ...
		

Crossrefs

Cf. A003989.
Cf. A018804 (row sums), A245717.
Cf. A132442 (sums of divisors).
Cf. A003418.

Programs

  • Haskell
    a050873 = gcd
    a050873_row n = a050873_tabl !! (n-1)
    a050873_tabl = zipWith (map . gcd ) [1..] a002260_tabl
    -- Reinhard Zumkeller, Dec 12 2015, Aug 13 2013, Jun 10 2013
  • Mathematica
    ColumnForm[Table[GCD[n, k], {k, 12}, {n, k}], Center] (* Alonso del Arte, Jan 14 2011 *)
  • PARI
    {T(n, k) = gcd(n, k)} /* Michael Somos, Jul 18 2011 */
    

Formula

a(n) = gcd(A002260(n), A002024(n)); A054521(n) = A000007(a(n)). - Reinhard Zumkeller, Dec 02 2009
T(n,k) = A075362(n,k)/A051173(n,k), 1 <= k <= n. - Reinhard Zumkeller, Apr 25 2011
T(n, k) = T(k, n) = T(-n, k) = T(n, -k) = T(n, n+k) = T(n+k, k). - Michael Somos, Jul 18 2011
T(n,k) = A051173(n,k) / A051537(n,k). - Reinhard Zumkeller, Jul 07 2013

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A023855 a(n) = 1*(n) + 2*(n-1) + 3*(n-2) + ... + (n+1-k)*k, where k = floor((n+1)/2).

Original entry on oeis.org

1, 2, 7, 10, 22, 28, 50, 60, 95, 110, 161, 182, 252, 280, 372, 408, 525, 570, 715, 770, 946, 1012, 1222, 1300, 1547, 1638, 1925, 2030, 2360, 2480, 2856, 2992, 3417, 3570, 4047, 4218, 4750, 4940, 5530, 5740, 6391, 6622, 7337, 7590, 8372, 8648, 9500, 9800, 10725, 11050
Offset: 1

Keywords

Comments

Given a rectangle of perimeter 2*n one can form rectangles having this perimeter for a number of different rectangles or squares depending on how large 2*n is. The sequence lists the total areas of all such rectangles for each 2*n. - J. M. Bergot, Sep 14 2011
Antidiagonal sums of triangle A075362. - L. Edson Jeffery, Jan 20 2012

Crossrefs

Programs

  • Haskell
    a023855 n = sum $ zipWith (*) [1 .. div (n+1) 2] [n, n-1 ..]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Magma
    [(4*n^3 +15*n^2 +14*n +3 -3*(n+1)^2*(-1)^n)/48: n in [1..60]]; // G. C. Greubel, Jul 12 2022
    
  • Maple
    seq(-(1/3)*floor((k+1)/2)^3 + (k/2)*floor((k+1)/2)^2 + ((3*k+2)/6)*floor((k+1)/2), k=1..100); # Wesley Ivan Hurt, Sep 18 2013
  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1}, {1,2,7,10,22,28,50}, 60] (* Vincenzo Librandi, Jan 23 2012 *)
    Table[-Ceiling[n/2] (Ceiling[n/2] + 1) (2 Ceiling[n/2] - 3 n - 2)/6, {n, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
  • PARI
    a(n)=if(n%2, (n+1)*(n+3)*(2*n+1)/24, n*(n+1)*(n+2)/12)
    
  • PARI
    my(x='x+O('x^99)); Vec(x*(1+x+2*x^2)/((1-x)^4*(1+x)^3)) \\ Altug Alkan, Mar 03 2018
    
  • SageMath
    [(4*n^3 +15*n^2 +14*n +3 -3*(n+1)^2*(-1)^n)/48 for n in (1..60)] # G. C. Greubel, Jul 12 2022

Formula

a(n) = (n+1)*(n+3)*(2*n+1)/24 if n is odd, or n*(n+1)*(n+2)/12 if n is even.
G.f.: x*(1+x+2*x^2)/((1-x)^4*(1+x)^3). - Ralf Stephan, Apr 28 2004
a(n) = Sum_{i=1..ceiling(n/2)} i*(n-i+1) = -ceiling(n/2)*(ceiling(n/2)+1)*(2*ceiling(n/2)-3n-2)/6. - Wesley Ivan Hurt, Sep 19 2013
a(n) = (4*n^3 + 15*n^2 + 14*n + 3 - 3*(n+1)^2*(-1)^n)/48. - Luce ETIENNE, Oct 22 2014
a(n) = (A000292(n) + (n mod 2)*(ceiling(n/2))^2)/2. - Luc Rousseau, Feb 25 2018
E.g.f.: (1/24)*( x*(21+12*x+2*x^2)*cosh(x) + (3+12*x+15*x^2+2*x^3)*sinh(x) ). - G. C. Greubel, Jul 12 2022

Extensions

Formula, program, and slight revision by Charles R Greathouse IV, Feb 23 2010

A051173 Triangle read by rows: T(n, k) = lcm(n, k).

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 4, 12, 4, 5, 10, 15, 20, 5, 6, 6, 6, 12, 30, 6, 7, 14, 21, 28, 35, 42, 7, 8, 8, 24, 8, 40, 24, 56, 8, 9, 18, 9, 36, 45, 18, 63, 72, 9, 10, 10, 30, 20, 10, 30, 70, 40, 90, 10, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 11, 12, 12, 12, 12, 60, 12, 84, 24, 36, 60, 132, 12
Offset: 1

Keywords

Examples

			Triangle begins (for the full array see A109042):
  [1]  1;
  [2]  2,  2;
  [3]  3,  6,  3;
  [4]  4,  4, 12,  4;
  [5]  5, 10, 15, 20,  5;
  [6]  6,  6,  6, 12, 30,  6;
  [7]  7, 14, 21, 28, 35, 42,  7;
  [8]  8,  8, 24,  8, 40, 24, 56,  8;
		

Crossrefs

Cf. A109043 (column 2), A051193 (row sums), A000384 (central terms).

Programs

  • Haskell
    a051173 = lcm
    a051173_row n = a051173_tabl !! (n-1)
    a051173_tabl = map (\x -> map (lcm x) [1..x]) [1..]
    -- Reinhard Zumkeller, Aug 13 2013, Jul 07 2013
    
  • Maple
    A051173 := proc(u,v) ilcm(u,v) ; end proc: # R. J. Mathar, Apr 07 2011
  • Mathematica
    Table[LCM[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
  • PARI
    T(n,k) = lcm(n,k);
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print;) \\ Michel Marcus, Jul 10 2017

Formula

T(n, 1) = T(n, n) = n. T(n, 2) = A109043(n). - R. J. Mathar, Apr 07 2011
T(n, k) = A075362(n, k)/A050873(n, k), 1 <= k <= n. - Reinhard Zumkeller, Apr 25 2011
T(n, k) = A051537(n, k) * A050873(n, k). - Reinhard Zumkeller, Jul 07 2013

A066680 Badly sieved numbers: as in the Sieve of Eratosthenes multiples of unmarked numbers p are marked, but only up to p^2.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 23, 27, 29, 30, 31, 37, 41, 43, 45, 47, 50, 53, 59, 61, 63, 67, 70, 71, 73, 75, 79, 80, 83, 89, 97, 98, 101, 103, 105, 107, 109, 112, 113, 125, 127, 128, 131, 137, 139, 147, 149, 151, 154, 157, 163
Offset: 1

Author

Reinhard Zumkeller, Dec 31 2001

Keywords

Comments

A099104(a(n)) = 1.
a(A207432(n)) = A000040(n). - Reinhard Zumkeller, Feb 17 2012
Obviously all primes and cubes of primes are in the sequence, while squares of primes are not. In fact, A000225 tells us which exponents prime powers in the sequence will exhibit.
But where it gets really interesting is in what happens to the Achilles numbers: the smallest badly sieved numbers that are also Achilles numbers are 864 and 972. - Alonso del Arte, Feb 21 2012
From Peter Munn, Aug 09 2019: (Start)
The factorization pattern of a number's divisors (as defined in A191743) determines whether a number is a term.
There are no semiprimes in the sequence, and a 3-almost prime is present if and only if its largest prime factor is less than its square root. The first term that is a 4-almost prime is 220.
The effect of this sieve can be compared against the A270877 trapezoidal sieve. Each unmarked number k marks k-1 numbers in both sieves; but the largest number marked by k in this sieve is k^2, about twice the largest number marked by k in A270877 (the triangular number T_k = k(k+1)/2). The relative densities early in the two sequences are illustrated by a(10) = 18 < A270877(10) = 19, a(100) = 312 > A270877(100) = 268, a(1000) = 4297 > A270877(1000) = 2894. (End)

Examples

			For 2, the first unmarked number, there is only one multiple <= 4=2^2:
giving 2 3 [4] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
for 3, the next unmarked number, we mark 6=2*3 and 9=3*3
giving 2 3 [4] 5 [6] 7 8 [9] 10 11 12 13 14 15 16 17 18 19 20 ...
for 5, the next unmarked number, we mark 10=2*5, 15=3*5, 20=4*5 and 25=5*5
giving 2 3 [4] 5 [6] 7 8 [9] [10] 11 12 13 14 [15] 16 17 18 19 [20] ... and so on.
		

Crossrefs

A066681, A066682, A066683, A099042, A099043, A207432 have analysis of this sequence.
Cf. A056875, A075362, A099104 (characteristic function), A191743.
Sequences generated by a closely related sieving process: A000040 (also a subsequence), A026424, A270877.

Programs

  • Haskell
    a066680 n = a066680_list !! (n-1)
    a066680_list = s [2..] where
       s (b:bs) = b : s [x | x <- bs, x > b ^ 2 || mod x b > 0]
    -- Reinhard Zumkeller, Feb 17 2012
  • Mathematica
    A099104[1] = 0; A099104[n_] := A099104[n] = Product[If[n > d^2, 1, 1 - A099104[d]], {d, Select[ Range[n-1], Mod[n, #] == 0 &]}]; Select[ Range[200], A099104[#] == 1 &] (* Jean-François Alcover, Feb 15 2012 *)
    max = 200; badPrimes = Range[2, max]; len = max; iter = 1; While[iter <= len, curr = badPrimes[[iter]]; badPrimes = Complement[badPrimes, Range[2, curr]curr]; len = Length[badPrimes]; iter++]; badPrimes (* Alonso del Arte, Feb 21 2012 *)

A215631 Triangle read by rows: T(n,k) = n^2 + n*k + k^2, 1 <= k <= n.

Original entry on oeis.org

3, 7, 12, 13, 19, 27, 21, 28, 37, 48, 31, 39, 49, 61, 75, 43, 52, 63, 76, 91, 108, 57, 67, 79, 93, 109, 127, 147, 73, 84, 97, 112, 129, 148, 169, 192, 91, 103, 117, 133, 151, 171, 193, 217, 243, 111, 124, 139, 156, 175, 196, 219, 244, 271, 300, 133, 147, 163
Offset: 1

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Examples

			The triangle begins:
row n   T(n,k), 1 <= k <= n
   1:     3
   2:     7   12
   3:    13   19   27
   4:    21   28   37   48
   5:    31   39   49   61   75
   6:    43   52   63   76   91  108
   7:    57   67   79   93  109  127  147
   8:    73   84   97  112  129  148  169  192
   9:    91  103  117  133  151  171  193  217  243
  10:   111  124  139  156  175  196  219  244  271  300
  11:   133  147  163  181  201  223  247  273  301  331  363
  12:   157  172  189  208  229  252  277  304  333  364  397  432
		

Crossrefs

Cf. A215646 (row sums), A002061 (left edge, shifted), A033428 (right edge), A003215.

Programs

  • Haskell
    a215631 n k = a215631_tabl !! (n-1) !! (k-1)
    a215631_row n = a215631_tabl !! (n-1)
    a215631_tabl = zipWith3 (zipWith3 (\u v w -> u + v + w))
                            a093995_tabl a075362_tabl a133819_tabl
    -- Reinhard Zumkeller, Nov 11 2012
    
  • Magma
    [[i^2+i*j+j^2: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Jun 07 2015
  • Maple
    seq(seq(i^2+i*j+j^2, j=1..i),i=1..10); # Robert Israel, May 10 2015
  • Mathematica
    Table[n^2 + n*k + k^2, {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, May 12 2015 *)
  • PARI
    for(n=1,15,for(k=1,n,print1(n^2+n*k+k^2,", "))) \\ Derek Orr, May 13 2015
    

Formula

T(n,k) = 2*A070216(n,k) - A215630(n,k).
G.f. for triangle: (3-2*x+3*x*y+x^2-11*x^2*y+4*x^3*y+x^3*y^2+x^4*y^2)*x*y/((1-x)^3*(1-x*y)^3). - Robert Israel, May 10 2015
From Avi Friedlich, May 26 2015: (Start)
T(n,k) = A093995(n,k) + A075362(n,k) + A133819(n,k).
T(k+1,k) = A003215(k).
T(k+2,k) = A003215(k)/2 + A003215(k+1)/2.
T(k+3,k) = A003215(k)/3 + A003215(k+1)/3 + A003215(k+2)/3 and so on. (End)

A215630 Triangle read by rows: T(n,k) = n^2 - n*k + k^2, 1 <= k <= n.

Original entry on oeis.org

1, 3, 4, 7, 7, 9, 13, 12, 13, 16, 21, 19, 19, 21, 25, 31, 28, 27, 28, 31, 36, 43, 39, 37, 37, 39, 43, 49, 57, 52, 49, 48, 49, 52, 57, 64, 73, 67, 63, 61, 61, 63, 67, 73, 81, 91, 84, 79, 76, 75, 76, 79, 84, 91, 100, 111, 103, 97, 93, 91, 91, 93, 97, 103, 111
Offset: 1

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Comments

T(n,k) = A093995(n,k) - A075362(n,k) + A133819(n,k) = 2*A070216(n,k) - A215631(n,k), 1 <= k <= n.

Examples

			The triangle begins:
.  1:     1
.  2:     3    4
.  3:     7    7    9
.  4:    13   12   13   16
.  5:    21   19   19   21   25
.  6:    31   28   27   28   31   36
.  7:    43   39   37   37   39   43   49
.  8:    57   52   49   48   49   52   57   64
.  9:    73   67   63   61   61   63   67   73   81
. 10:    91   84   79   76   75   76   79   84   91  100
. 11:   111  103   97   93   91   91   93   97  103  111  121
. 12:   133  124  117  112  109  108  109  112  117  124  133  144 .
		

Crossrefs

Cf. A004068 (row sums), A002061 (left edge), A000290 (right edge).
Cf. A003215 (central terms).

Programs

  • Haskell
    a215630 n k = a215630_tabl !! (n-1) !! (k-1)
    a215630_row n = a215630_tabl !! (n-1)
    a215630_tabl = zipWith3 (zipWith3 (\u v w -> u - v + w))
                            a093995_tabl a075362_tabl a133819_tabl

A079904 Triangle read by rows: T(n, k) = n*k, 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 2, 4, 0, 3, 6, 9, 0, 4, 8, 12, 16, 0, 5, 10, 15, 20, 25, 0, 6, 12, 18, 24, 30, 36, 0, 7, 14, 21, 28, 35, 42, 49, 0, 8, 16, 24, 32, 40, 48, 56, 64, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121
Offset: 0

Author

Reinhard Zumkeller, Feb 21 2003

Keywords

Comments

See the comment in A025581 on a problem posed by François Viète (Vieta) 1593, where this triangle is related to A025581 and A257238. - Wolfdieter Lang, May 12 2015

Examples

			Triangle T(n, k) begins:
  n\k 0  1  2  3  4  5  6  7  8  9  10 ...
  0:  0
  1:  0  1
  2:  0  2  4
  3:  0  3  6  9
  4:  0  4  8 12 16
  5:  0  5 10 15 20 25
  6:  0  6 12 18 24 30 36
  7:  0  7 14 21 28 35 42 49
  8:  0  8 16 24 32 40 48 56 64
  9:  0  9 18 27 36 45 54 63 72 81
  10: 0 10 20 30 40 50 60 70 80 90 100
  ... - _Wolfdieter Lang_, May 12 2015
		

Crossrefs

Cf. A075362 (without column k=0), A002411 (row sums), A001105 (central terms).

Programs

  • Maple
    seq(seq(n*k, k=0..n), n=0..10); # Robert Israel, May 12 2015
  • Mathematica
    Array[Range[0, #^2, #] &, 15, 0] (* Paolo Xausa, Mar 27 2025 *)
  • PARI
    row(n) = vector(n+1, i, (i-1)*n); \\ Amiram Eldar, May 12 2025

Formula

T(n, k) = n*k, 0 <= k <= n.
T(n, k) = if k = 0 then 0 else T(n, k-1) + n.
T(n, 0) = 1. T(n, 1) = n for n > 0.
T(n, 2) = A005843(n) for n > 1.
T(n, 3) = A008585(n) for n > 2.
T(n, 4) = A008586(n) for n > 3.
T(n, n-2) = A005563(n-1) for n > 1.
T(n, n-1) = A002378(n-1) for n > 0.
T(n, n) = A000290(n).
T(n, k) = (A257238(n, k) - A025581(n, k)^3) / (3*A025581(n, k)). See the Viète comment above. - Wolfdieter Lang, May 12 2015
From Robert Israel, May 12 2015: (Start)
G.f. as triangle: (1 + x*y - 2*x^2*y)*x*y/((1 - x)^2*(1 - x*y)^3).
G.f. as sequence: -(Sum_{n>=0} (n^2 - n)*x^(n*(n + 1)/2)) / (1 - x) + (Sum_{n>=1} x^(n*(n + 1)/2)) * x/(1 - x)^2. These sums are related to Jacobi Theta functions. (End)
T(n, k) = gcd(n, k) * lcm(n, k). - Peter Luschny, Mar 26 2025

A340792 List in which n appears ceiling(d(n)/2) = A038548(n) times, where d(n) is the number of divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 15, 15, 16, 16, 16, 17, 18, 18, 18, 19, 20, 20, 20, 21, 21, 22, 22, 23, 24, 24, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 29, 30, 30, 30, 30, 31, 32, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 36
Offset: 1

Author

Charles Kusniec, Jan 21 2021

Keywords

Comments

The numbers in A075362 arranged in numerical order.

Examples

			Array begins:
   1
   2
   3
   4  4
   5
   6  6
   7
   8  8
   9  9
  10 10
  11
  12 12 12
  13
  14 14
  15 15
  16 16 16
  17
  18 18 18
  19
  20 20 20
  21 21
  22 22
  23
  24 24 24 24
		

Crossrefs

Cf. A038548 (row lengths), A075362, A161906, A340791, A061017 (comparable array).

Programs

  • PARI
    row(n) = my(d=divisors(n), r1=select(x->(x<=sqrt(n)), d), r2=Vecrev(select(x->(x>=sqrt(n)), d))); vector(#r1, k, r1[k]*r2[k]); \\ Michel Marcus, Jan 22 2021

Formula

T(n,k) = A161906(n,k) * A340791(n,k).
Showing 1-10 of 15 results. Next