cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A284262 a(n) = where A284259 for the first time obtains value n (positions of its records).

Original entry on oeis.org

1, 2, 6, 105, 5005, 85085, 1616615, 37182145, 6685349671, 247357937827, 10141675450907, 436092044389001, 20496326086283047, 9156001667401012567, 558516101711461766587, 37420578814667938361329, 2656861095841423623654359, 193950859996423924526768207, 15322117939717490037614688353, 1271735788996551673122019133299
Offset: 0

Views

Author

Antti Karttunen, Mar 24 2017

Keywords

Crossrefs

Cf. A001221, A001222, A002110, A003961, A242378, A284259 (a left inverse), A284263.
Cf. also A109819.

Programs

  • Mathematica
    A[n_]:= If[n<1, 0, Block[{k=1}, While[Prime[n + k  - 1] > Prime[k]^2, k++]; k - 1]]; a[n_]:=If[n<2, n + 1, Product[Prime[i], {i, A[n] + 1, A[n] + n}]]; Table[a[n], {n, 0, 51}] (* Indranil Ghosh, Mar 24 2017 *)
  • PARI
    A(n) = { my(k=1); if(0==n, 0, while(prime(n+k-1) > (prime(k)^2), k = k+1); (k-1)); };
    a(n) = prod(i=A(n) + 1, A(n) + n, prime(i));
    for(n=0, 51, print1(a(n),", ")) \\ Indranil Ghosh, after Antti Karttunen, Mar 24 2017
    
  • Python
    from sympy import prime
    from operator import mul
    from functools import reduce
    def A(n):
        if n<1: return 0
        k=1
        while prime(n + k - 1)>prime(k)**2:k+=1
        return k - 1
    def a(n): return n + 1 if n<2 else reduce(mul, [prime(i) for i in range(A(n) + 1, A(n) + n + 1)])
    print([a(n) for n in range(21)]) # Indranil Ghosh, Mar 24 2017
  • Scheme
    (define (A284262 n) (A242378bi (A284263 n) (A002110 n))) ;; Where A242378bi(k,n) applies prime shift A003961(n) k times. See A242378.
    

Formula

For n > 1, a(n) = Product_{i = A284263(n)+1 .. A284263(n)+n} prime(i); a(0) = 1, a(1) = 2.
a(n) = A242378(A284263(n), A002110(n)) [shift the prime factorization of the n-th primorial A284263(n) steps towards larger primes].
Other identities. For all n >= 0:
A001221(a(n)) = A001222(a(n)) = n.
A284259(a(n)) = n.

A109818 Sum of primes between n and n^2.

Original entry on oeis.org

0, 5, 15, 36, 95, 150, 318, 484, 774, 1043, 1576, 2099, 2886, 3790, 4620, 6040, 7941, 9465, 11541, 13810, 16763, 19982, 23515, 26840, 32253, 37461, 42368, 48394, 55737, 62668, 70112, 80029, 89512, 100678, 111427, 124051, 135954, 148630, 166354
Offset: 1

Views

Author

Rick L. Shepherd, Jul 02 2005

Keywords

Examples

			a(3) = 15 because 3, 5 and 7 are the A073882(3) = 3 primes in the interval from 3 to 3^2 inclusive and 3 + 5 + 7 = 15.
		

Crossrefs

Cf. A109819 (product of same primes), A073882 (number of primes between n and n^2).

Programs

  • Mathematica
    Join[{0},Table[Sum[Prime[i],{i,If[PrimeQ[n],PrimePi[n],PrimePi[n]+1],PrimePi[n^2]}],{n,2,39}]] (* James C. McMahon, Apr 02 2024 *)
  • PARI
    for(n=1,50,print1(sum(k=n,n^2,if(isprime(k),k)),","))

A376740 Numbers that have at least one two-digit prime factor.

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117
Offset: 1

Views

Author

Kishin Ikemoto, Oct 03 2024

Keywords

Comments

Subsequence of A068191, first differing at A068191(55) = 101 which is not a term here.
Numbers k such that gcd(k,10978895066407230594062391177770267) > 1. - Chai Wah Wu, Nov 18 2024 [The big number is A109819(10) - Alois P. Heinz, Nov 18 2024]
The asymptotic density of this sequence is A051953(A109819(10))/A109819(10) = 1329644281346285477858013527/2807455661493975149742813527 = 0.473611... . - Amiram Eldar, Nov 19 2024

Examples

			201 = 3*67 is in this sequence because it has one two-digit prime factor.
202 = 2*101 is not, because neither of them is two-digit.
		

Crossrefs

Programs

  • Maple
    q:= convert(select(isprime, [seq(i,i=11 .. 99, 2)]),`*`):
    filter:= n -> igcd(n,q) > 1:
    select(filter, [$1..200]); # Robert Israel, Nov 18 2024
  • Mathematica
    A376740Q[k_] := GCD[k, 10978895066407230594062391177770267] > 1;
    Select[Range[200], A376740Q] (* Paolo Xausa, Jun 24 2025 *)
  • PARI
    is(k) = {forprime(p = 11, 97, if(!(k % p), return(1))); 0;} \\ Amiram Eldar, Nov 19 2024
  • Python
    def ok(n): return any(n%p == 0 for p in [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97])
    print([k for k in range(1, 118) if ok(k)]) # Michael S. Branicky, Oct 15 2024
    

Formula

a(n + A051953(A109819(10))) = a(n) + A109819(10). - Amiram Eldar, Nov 19 2024
Showing 1-3 of 3 results.