A109901 a(n) = binomial(n^2, n*(n+1)/2).
1, 1, 4, 84, 8008, 3268760, 5567902560, 39049918716424, 1118770292985239888, 130276394656770614583240, 61448471214136179596720592960, 117118180539414377821494470432491764, 900390992257782351906806257139068209113040, 27883369051325994219981405855549095749234579210080
Offset: 0
Examples
a(6) = 36!/(21!*15!) = 5567902560.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- A. Baliga and K. J. Horadam, Cocyclic Hadamard matrices over Z_t X Z^2_2, Australas. J. Combin. 11(1995), 123-134.
Programs
-
Maple
seq(binomial(n^2,n*(n+1)/2),n=0..12); # Emeric Deutsch, Jul 16 2005
-
Mathematica
Table[Binomial[n^2,(n(n+1))/2],{n,20}] (* Harvey P. Dale, Jun 04 2011 *)
-
PARI
a(n)=binomial(n^2,n*(n+1)/2)
Formula
a(n) = C(n^2, n*(n+1)/2) = (n^2!)/((n(n+1)/2)!*(n(n-1)/2)!).
a(n) = C(n^2, n*(n-1)/2).
Extensions
More terms from Emeric Deutsch, Jul 16 2005
Offset changed to 0 (with a(0)=1), and name changed slightly by Paul D. Hanna, Jun 24 2011
Terms a(12) and beyond from Andrew Howroyd, Nov 09 2019
Comments