A109906 A triangle based on A000045 and Pascal's triangle: T(n,m) = Fibonacci(n-m+1) * Fibonacci(m+1) * binomial(n,m).
1, 1, 1, 2, 2, 2, 3, 6, 6, 3, 5, 12, 24, 12, 5, 8, 25, 60, 60, 25, 8, 13, 48, 150, 180, 150, 48, 13, 21, 91, 336, 525, 525, 336, 91, 21, 34, 168, 728, 1344, 1750, 1344, 728, 168, 34, 55, 306, 1512, 3276, 5040, 5040, 3276, 1512, 306, 55, 89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 2, 2, 2; 3, 6, 6, 3; 5, 12, 24, 12, 5; 8, 25, 60, 60, 25, 8; 13, 48, 150, 180, 150, 48, 13; 21, 91, 336, 525, 525, 336, 91, 21; 34, 168, 728, 1344, 1750, 1344, 728, 168, 34; 55, 306, 1512, 3276, 5040, 5040, 3276, 1512, 306, 55; 89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89; ...
Links
- Reinhard Zumkeller, Rows n = 0..120 of table, flattened
- Peter McCalla, Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a109906 n k = a109906_tabl !! n !! k a109906_row n = a109906_tabl !! n a109906_tabl = zipWith (zipWith (*)) a058071_tabl a007318_tabl -- Reinhard Zumkeller, Aug 15 2013
-
Maple
f:= n-> combinat[fibonacci](n+1): T:= (n, k)-> binomial(n, k)*f(k)*f(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 26 2023
-
Mathematica
Clear[t, n, m] t[n_, m_] := Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
T(n,m) = Fibonacci(n-m+1)*Fibonacci(m+1)*binomial(n,m).
Extensions
Offset changed by Reinhard Zumkeller, Aug 15 2013
Comments