A109953 Primes p such that p^2+2 is a semiprime.
2, 7, 11, 17, 29, 37, 43, 53, 73, 79, 83, 97, 137, 191, 233, 251, 263, 269, 271, 277, 281, 359, 379, 389, 433, 461, 479, 521, 541, 577, 601, 631, 647, 677, 691, 719, 739, 827, 829, 863, 881, 929, 947, 983, 997, 1033, 1063, 1087, 1109, 1187, 1223
Offset: 1
Keywords
Examples
a(2) = 7 is o.k. because 7^2+2=51=3*17 (semiprime), and 17 = A289135(2).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
A109953=Select[Prime[Range[200]], Plus@@Last/@FactorInteger[ #^2+2]==2&] Select[Prime[Range[200]],PrimeOmega[#^2+2]==2&] (* Harvey P. Dale, Nov 19 2011 *)
Formula
a(n) = sqrt(3*A289135(n) - 2). See the T. D. Noe comment above. - Wolfdieter Lang, Jul 19 2017
Comments