A109974 Array read by downwards antidiagonals: sigma_k(n) for n >= 1, k >= 0.
1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 2, 7, 10, 9, 1, 4, 6, 21, 28, 17, 1, 2, 12, 26, 73, 82, 33, 1, 4, 8, 50, 126, 273, 244, 65, 1, 3, 15, 50, 252, 626, 1057, 730, 129, 1, 4, 13, 85, 344, 1394, 3126, 4161, 2188, 257, 1, 2, 18, 91, 585, 2402, 8052, 15626, 16513, 6562, 513, 1
Offset: 0
Examples
Start of array: 1, 2, 2, 3, 2, 4, ... 1, 3, 4, 7, 6, 12, ... 1, 5, 10, 21, 26, 50, ... 1, 9, 28, 73, 126, 252, ... 1, 17, 82, 273, 626, 1394, ... ... The triangle T(m, k) with row offset 1 starts: m\k 0 1 2 3 4 5 6 7 8 9 ... 1: 1 2: 2 1 3: 2 3 1 4: 3 4 5 1 5: 2 7 10 9 1 6: 4 6 21 28 17 1 7: 2 12 26 73 82 33 1 8: 4 8 50 126 273 244 65 1 9: 3 15 50 252 626 1057 730 129 1 10: 4 13 85 344 1394 3126 4161 2188 257 1 ... - _Wolfdieter Lang_, Jan 14 2016
References
- Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 120, 129 - 134.
- Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
- Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.
Links
- Alois P. Heinz, Antidiagonals k = 0..140, flattened
Crossrefs
Programs
-
Magma
A109974:= func< n,k | DivisorSigma(k-1, n-k+1) >; [A109974(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
-
Maple
with(numtheory): seq(seq(sigma[k](1+d-k), k=0..d), d=0..12); # Alois P. Heinz, Feb 06 2013
-
Mathematica
rows=12; Flatten[Table[DivisorSigma[k-n, n], {k,1,rows}, {n,k,1,-1}]] (* Jean-François Alcover, Nov 15 2011 *)
-
SageMath
def A109974(n,k): return sigma(n-k+1, k-1) flatten([[A109974(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 18 2023
Formula
Regarded as a triangle, T(n, k) = if(k<=n, sigma(k-1, n-k+1), 0). - Franklin T. Adams-Watters, Jul 17 2006
If the row index (the index of the antidiagonal of the array) is taken as m with offset 1 the triangle is T(m, k) = sigma_k(m-k), 1 <= k+1 <= m, otherwise 0. - Wolfdieter Lang, Jan 14 2016
G.f. for the triangle with offset 1: G(x,y) = Sum_{j>=1} x^j/((1-x^j)*(1-j*x*y)). - Robert Israel, Jan 14 2016
Comments