A109983 Triangle read by rows: T(n, k) (0<=k<=2n) is the number of Delannoy paths of length n, having k steps.
1, 0, 1, 2, 0, 0, 1, 6, 6, 0, 0, 0, 1, 12, 30, 20, 0, 0, 0, 0, 1, 20, 90, 140, 70, 0, 0, 0, 0, 0, 1, 30, 210, 560, 630, 252, 0, 0, 0, 0, 0, 0, 1, 42, 420, 1680, 3150, 2772, 924, 0, 0, 0, 0, 0, 0, 0, 1, 56, 756, 4200, 11550, 16632, 12012, 3432
Offset: 0
Examples
T(2, 3) = 6 because we have DNE, DEN, NED, END, NDE and EDN. Triangle begins 1; 0,1,2; 0,0,1,6,6; 0,0,0,1,12,30,20; ...
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- Hsien-Kuei Hwang and Satoshi Kuriki, Integrated empirical measures and generalizations of classical goodness-of-fit statistics, arXiv:2404.06040 [math.ST], 2024. See p. 11.
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
Programs
-
Haskell
a109983 n k = a109983_tabf !! n !! k a109983_row n = a109983_tabf !! n a109983_tabf = zipWith (++) (map (flip take (repeat 0)) [0..]) a063007_tabl -- Reinhard Zumkeller, Nov 18 2014
-
Maple
T := (n,k)->binomial(n,2*n-k)*binomial(k,n): for n from 0 to 8 do seq(T(n,k),k=0..2*n) od; # yields sequence in triangular form # Alternative: gf := ((1 - x*y)^2 - 4*x^2*y)^(-1/2): yser := series(gf, y, 12): ycoeff := n -> coeff(yser, y, n): row := n -> seq(coeff(expand(ycoeff(n)), x, k), k=0..2*n): seq(row(n), n=0..7); # Peter Luschny, Oct 28 2020
-
PARI
{T(n, k) = binomial(n, k-n) * binomial(k, n)} /* Michael Somos, Sep 22 2013 */
Formula
T(n, k) = binomial(n, 2*n-k) binomial(k, n).
T(n, k) = A104684(n, 2*n-k).
G.f.: 1/sqrt((1 - t*z)^2 - 4*z*t^2).
T(n, 2*n) = binomial(2*n, n) (A000984).
Sum_{k=0..n} k*T(n, k) = A109984(n).
T(n, k) = A063007(n, k-n). - Michael Somos, Sep 22 2013
Comments