cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110001 n followed by n^2 followed by n^3 followed by n^4.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 16, 3, 9, 27, 81, 4, 16, 64, 256, 5, 25, 125, 625, 6, 36, 216, 1296, 7, 49, 343, 2401, 8, 64, 512, 4096, 9, 81, 729, 6561, 10, 100, 1000, 10000, 11, 121, 1331, 14641, 12, 144, 1728, 20736, 13, 169, 2197, 28561, 14, 196, 2744, 38416, 15, 225
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 02 2005

Keywords

Crossrefs

Programs

  • Maple
    seq(seq(n^k, k=1..4), n=1..15); # Zerinvary Lajos, Jun 29 2007
  • Mathematica
    Table[(3/8 + n/4 - (1/4) Cos[(Pi n)/2] - (1/8) Cos[Pi n] + (1/4) Sin[(Pi n)/2])^(Mod[n + 3, 4] + 1), {n, 1, 58}] (* Ilya Gutkovskiy, Dec 02 2015 *)
  • PARI
    Vec(x*(1+x+x^2+x^3-3*x^4-x^5+3*x^6+11*x^7+3*x^8-x^9-3*x^10+11*x^11-x^12+x^13-x^14+x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5) + O(x^100)) \\ Colin Barker, Dec 02 2015

Formula

a(n) = (3/8 + n/4 - (1/4)*cos((Pi*n)/2) - (1/8)*cos(Pi*n) + (1/4)*sin((Pi*n)/2))^(((n + 3) mod 4) + 1). - Ilya Gutkovskiy, Dec 02 2015
From Colin Barker, Dec 02 2015: (Start)
a(n) = 5*a(n-4)-10*a(n-8)+10*a(n-12)-5*a(n-16)+a(n-20) for n>20.
G.f.: x*(1+x+x^2+x^3-3*x^4-x^5+3*x^6+11*x^7+3*x^8-x^9-3*x^10+11*x^11-x^12+x^13-x^14+x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5).
(End)