cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110009 n followed by n^4 followed by n^2 followed by n^3.

Original entry on oeis.org

1, 1, 1, 1, 2, 16, 4, 8, 3, 81, 9, 27, 4, 256, 16, 64, 5, 625, 25, 125, 6, 1296, 36, 216, 7, 2401, 49, 343, 8, 4096, 64, 512, 9, 6561, 81, 729, 10, 10000, 100, 1000, 11, 14641, 121, 1331, 12, 20736, 144, 1728, 13, 28561, 169, 2197, 14, 38416, 196, 2744, 15, 50625
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 02 2005

Keywords

Crossrefs

Programs

  • Maple
    map(t -> (t,t^4,t^3,t^2), [$1..100]); # Robert Israel, Aug 15 2016
  • Mathematica
    Flatten[Table[{n,n^4,n^2,n^3},{n,20}]] (* or *) Flatten[ With[ {c=Range[20]}, Thread[{c,c^4,c^2,c^3}]]] (* Harvey P. Dale, Mar 28 2012 *)
  • PARI
    Vec(x*(1+x+x^2+x^3-3*x^4+11*x^5-x^6+3*x^7+3*x^8+11*x^9-x^10-3*x^11-x^12+x^13+x^14-x^15)/((1-x)^5*(1+x)^5*(1+x^2)^5) + O(x^60)) \\ Colin Barker, Aug 15 2016

Formula

a(n) = (2*n+3-(-1)^n+2*(-1)^((2*n-3-(-1)^n)/4))*(n^3+10*n^2+28*n+88+(n^3+10*n^2-4*n-72)*(-1)^n+(n^3+2*n^2-4*n+56)*(-1)^((2*n-3-(-1)^n)/4)-(n^3+2*n^2+28*n-40)*(-1)^((2*n-1+(-1)^n)/4))/2048. - Luce ETIENNE, Aug 15 2016
G.f.: x*(1+x+x^2+x^3-3*x^4+11*x^5-x^6+3*x^7+3*x^8+11*x^9-x^10-3*x^11-x^12+x^13+x^14-x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5). - Colin Barker, Aug 15 2016