cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110035 Row sums of an unsigned characteristic triangle for the Fibonacci numbers.

Original entry on oeis.org

1, 2, 5, 12, 31, 80, 209, 546, 1429, 3740, 9791, 25632, 67105, 175682, 459941, 1204140, 3152479, 8253296, 21607409, 56568930, 148099381, 387729212, 1015088255, 2657535552, 6957518401, 18215019650, 47687540549, 124847601996
Offset: 0

Views

Author

Paul Barry, Jul 08 2005

Keywords

Comments

Rows sums of abs(A110033).

Examples

			G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 31*x^4 + 80*x^5 + 209*x^6 + ... - _Michael Somos_, Mar 03 2023
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-3,1},{1,2,5,12},50] (* Harvey P. Dale, May 01 2022 *)
    a[ n_] := With[{F = Fibonacci}, (1 + F[n+1]*F[n+2] + F[n+n])/2]; (* Michael Somos, Mar 03 2023 *)
  • PARI
    {a(n) = my(F = fibonacci); (1 + F(n+1)*F(n+2) + F(n+n))/2}; /* Michael Somos, Mar 03 2023 */

Formula

G.f.: (1-x-x^2)/((1-x^2)(1-3x+x^2));
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4);
a(n) = F(2n) + 1 + Sum_{k=0..n-1} F(k)*F(k+1).
From R. J. Mathar, Jul 22 2010: (Start)
a(n) = Sum_{i=0..n} A061646(i).
a(n) = (5 + (-1)^n + 4*A002878(n))/10. (End)
a(n) = A110034(-n) = 1 - A110034(1+n) = A236438(n) + (n mod 2) = (1 + F(n+1)*F(n+2) + F(2*n))/2 for all n in Z. - Michael Somos, Mar 03 2023