cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A110033 A characteristic triangle for the Fibonacci numbers.

Original entry on oeis.org

1, -1, 1, 1, -3, 1, 0, 3, -8, 1, 0, 0, 9, -21, 1, 0, 0, 0, 24, -55, 1, 0, 0, 0, 0, 64, -144, 1, 0, 0, 0, 0, 0, 168, -377, 1, 0, 0, 0, 0, 0, 0, 441, -987, 1, 0, 0, 0, 0, 0, 0, 0, 1155, -2584, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3025, -6765, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7920, -17711, 1
Offset: 0

Views

Author

Paul Barry, Jul 08 2005

Keywords

Examples

			Rows begin
1;
-1,1;
1,-3,1;
0,3,-8,1;
0,0,9,-21,1;
0,0,0,24,-55,1;
0,0,0,0,64,-144,1;
0,0,0,0,0,168,-377,1;
		

Formula

Form the n X n Hankel matrices F(i+j-1), 1<=i, j<=n for the Fibonacci numbers and take the characteristic polynomials of these matrices. Triangle rows give coefficients of these characteristic polynomials. (Construction described by Michael Somos in A064831). Diagonal is (-1)^n*F(2n+2). Subdiagonal is A064831. Row sums are A110034. The unsigned matrix has row sums A110035.

A206282 a(n) = ( a(n-1) * a(n-3) + a(n-2) ) / a(n-4), a(1) = a(2) = 1, a(3) = -1, a(4) = -4.

Original entry on oeis.org

1, 1, -1, -4, -5, 1, 9, 11, -4, -25, -31, 9, 64, 79, -25, -169, -209, 64, 441, 545, -169, -1156, -1429, 441, 3025, 3739, -1156, -7921, -9791, 3025, 20736, 25631, -7921, -54289, -67105, 20736, 142129, 175681, -54289, -372100, -459941, 142129, 974169, 1204139
Offset: 1

Views

Author

Michael Somos, Feb 05 2012

Keywords

Comments

This satisfies the same recurrence as Dana Scott's sequence A048736.

Examples

			G.f. = x + x^2 - x^3 - 4*x^4 - 5*x^5 + x^6 + 9*x^7 + 11*x^8 - 4*x^9 - 25*x^10 + ...
		

Crossrefs

Programs

  • Haskell
    a206282 n = a206282_list !! (n-1)
    a206282_list = 1 : 1 : -1 : -4 :
       zipWith div
         (zipWith (+)
           (zipWith (*) (drop 3 a206282_list)
                        (drop 1 a206282_list))
           (drop 2 a206282_list))
         a206282_list
    -- Same program as in A048736, see comment.
    -- Reinhard Zumkeller, Feb 08 2012
    
  • Magma
    I:=[1,1,-1,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2))/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 12 2018
  • Mathematica
    CoefficientList[Series[x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4-2*x^6+x^8 ), {x,0,50}], x] (* or *) RecurrenceTable[{a[n] == ( a[n-1]*a[n-3] + a[n-2] )/a[n-4], a[1] == a[2] == 1, a[3] == -1, a[4] == -4}, a, {n,1,50}] (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    {a(n) = my(k = n\3); (-1)^k * if( n%3 == 0, fibonacci( k )^2, n%3 == 1, fibonacci( k+2 )^2, fibonacci( k ) * fibonacci( k+3 ) + fibonacci( k+1 ) * fibonacci( k+2 ))};
    
  • PARI
    x='x+O('x^30); Vec(x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4 -2*x^6 +x^8 )) \\ G. C. Greubel, Aug 12 2018
    

Formula

G.f.: x * (1 + x - x^2 - 2*x^3 - 3*x^4 - x^5 - x^6 - x^7) / (1 + 2*x^3 - 2*x^6 - x^9).
a(n) = a(-5 - n) = a(n+2) * a(n-2) - a(n+1) * a(n-1) for all n in Z.
a(3*n) = (-1)^n * F(n)^2, a(3*n + 1) = (-1)^n * F(n + 2)^2 where F = Fibonacci A000045.
a(6*n - 4) = - A110034(2*n), a(6*n - 1) = - A110035(2*n), a(3*n + 2) = (-1)^n * A126116(2*n + 3).

A240836 Numbers n such that n^3 = x*y*z where 2 <= x <= y <= z , n^3+1 = (x-1)*(y+1)*(z+1).

Original entry on oeis.org

2, 12, 80, 546, 3740, 25632, 175682, 1204140, 8253296, 56568930, 387729212, 2657535552, 18215019650, 124847601996, 855718194320, 5865179758242, 40200540113372, 275538601035360, 1888569667134146, 12944449068903660, 88722573815191472, 608113567637436642
Offset: 1

Views

Author

Naohiro Nomoto, Apr 12 2014

Keywords

Comments

Also, z/y approx = y/x approx = golden ratio.

Examples

			546^3 = 338 * 546 * 882, 546^3 + 1 = 337 * 547 * 883.
25632^3 = 15842 * 25632 * 41472, 25632^3 + 1 = 15841 * 25633 * 41473.
		

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..30], n-> 2*F(2*n)*F(2*n-1) ); # G. C. Greubel, Jul 15 2019
  • Magma
    F:=Fibonacci; [2*F(2*n)*F(2*n-1): n in [1..30]]; // G. C. Greubel, Jul 15 2019
    
  • Maple
    with(combinat); A240836:=n->2*fibonacci(2*n)*fibonacci(2*n-1); seq(A240836(n), n=1..30); # Wesley Ivan Hurt, Apr 13 2014
  • Mathematica
    Table[2Fibonacci[2n]Fibonacci[2n-1], {n, 30}] (* Wesley Ivan Hurt, Apr 13 2014 *)
  • PARI
    vector(30, n, f=fibonacci; 2*f(2*n)*f(2*n-1)) \\ G. C. Greubel, Jul 15 2019
    
  • Sage
    f=fibonacci; [2*f(2*n)*f(2*n-1) for n in (1..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = 2*F(2n)*F(2n-1) where F(n) are the Fibonacci numbers (A000045).
G.f.: 2*x*(1-2*x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Apr 13 2014
a(n) = 2 * A081016(n-1). - Wesley Ivan Hurt, Apr 13 2014

Extensions

More terms from Colin Barker, Apr 13 2014

A176117 Primes p such that T(p) is prime in Juricevic conjecture on classification of Lehmer triples.

Original entry on oeis.org

2, 5, 809
Offset: 1

Views

Author

Jonathan Vos Post, Apr 08 2010

Keywords

Comments

Primes p such that A110035(2p) is prime. The value after 809 is > 2741. - R. J. Mathar, Jul 22 2010
a(4) > 15661, if it exists. - D. S. McNeil, Nov 27 2010

Crossrefs

Cf. A000040.

Formula

p such that T(p) is prime, where T(p) = (1/5)*(((1+sqrt(5))*((3+sqrt(5))/2)^(2*p)) + ((1-sqrt(5))*((3-sqrt(5))/2)^(2*p)) + 3).

A378277 Denominators in a harmonic triangle, based on products of Fibonacci numbers.

Original entry on oeis.org

1, 2, 2, 2, 3, 6, 2, 3, 10, 15, 2, 3, 10, 24, 40, 2, 3, 10, 24, 65, 104, 2, 3, 10, 24, 65, 168, 273, 2, 3, 10, 24, 65, 168, 442, 714, 2, 3, 10, 24, 65, 168, 442, 1155, 1870, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 4895, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 7920, 12816
Offset: 1

Views

Author

Werner Schulte, Nov 21 2024

Keywords

Comments

The harmonic triangle uses the terms of this sequence as denominators, numerators = 1.
The inverse of the harmonic triangle has entries -(Fibonacci(k+1))^2 for 1<=k
Row sums of the harmonic triangle are 1.
Conjecture: Alt. row sums of the harmonic triangle are Fibonacci(n-2) / Fibonacci(n+1), where Fibonacci(-1) = 1.

Examples

			Triangle T(n, k) for 1 <= k <= n starts:
n\ k :  1  2   3   4   5    6    7     8     9    10     11
===========================================================
   1 :  1
   2 :  2  2
   3 :  2  3   6
   4 :  2  3  10  15
   5 :  2  3  10  24  40
   6 :  2  3  10  24  65  104
   7 :  2  3  10  24  65  168  273
   8 :  2  3  10  24  65  168  442   714
   9 :  2  3  10  24  65  168  442  1155  1870
  10 :  2  3  10  24  65  168  442  1155  3026  4895
  11 :  2  3  10  24  65  168  442  1155  3026  7920  12816
  etc.
		

Crossrefs

Cf. A000045, A110034, A110035, A001654 (main diagonal), A059929 (subdiagonals).

Programs

  • PARI
    T(n,k)=if(k==n,Fibonacci(n)*Fibonacci(n+1),Fibonacci(k)*Fibonacci(k+2))

Formula

T(n, k) = Fibonacci(n) * Fibonacci(n+1) if k = n, and Fibonacci(k) * Fibonacci(k+2) if 1 <= k < n.
Row sums are A110035(n) - 1 = -A110034(n+1).
G.f.: A(t, x) = x*t*(1 + t - x*t^2) / ((1 - t) * (1 + x*t) * (1 - 3*x*t + x^2*t^2)).
Showing 1-5 of 5 results.