A110041 a(n) = number of labeled graphs on n vertices (with no isolated vertices, multi-edges or loops) such that the degree of every vertex is at most 3.
1, 0, 1, 4, 41, 512, 8285, 166582, 4054953, 116797432, 3912076929, 150190759240, 6532014077809, 318632936830136, 17286883399233149, 1035508343364348938, 68053563847088272945, 4879593083836366195728, 379847137967853770523937, 31960371880691511556886988
Offset: 0
Examples
Graphs listed by edgeset: a(3) = 4: {(1,2), (2,3)}, {(1,3), (2,3)}, {(1,3), (1,2)}, {(2,3), (1,2), (1,3)}.
References
- Goulden, I. P.; Jackson, D. M. Labelled graphs with small vertex degrees and $P$-recursiveness. SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093) [Gives e.g.f.]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Formula
Satisfies the linear recurrence: (-150917976*n^2 - 105258076*n^3 - 1925*n^9 - 13339535*n^5 - 45995730*n^4 - 357423*n^7 - 2637558*n^6 - 120543840*n - n^11 - 66*n^10 - 39916800 - 32670*n^8)*a(n) + (22057180*n^4 + 2*n^10 + 69934280*n^3 + 140581872*n^2 + 161254080*n + 4621890*n^5 + 79833600 + 130*n^9 + 3720*n^8 + 61620*n^7 + 653226*n^6)*a(n + 1) +
(3*n^10 + 6932835*n^5 + 5580*n^8 + 92430*n^7 + 979839*n^6 + 241881120*n + 33085770*n^4 + 104901420*n^3 + 210872808*n^2 + 119750400 + 195*n^9)*a(n + 2) + (6932520*n^3 + 39916800 + 136080*n^5 + 24168936*n^2 + 9324*n^6 + 47363040*n + 1223334*n^4 + 6*n^8 + 360*n^7)*a(n + 3) + (6*n^8 + 1431654*n^4 + 372*n^7 + 9996*n^6 + 152040*n^5 + 59875200 + 8545908*n^3 + 31580424*n^2 + 66054960*n)*a(n + 4) + (9100956*n + 6*n^7 + 9646560 + 3631220*n^2 + 335*n^6 + 7929*n^5 + 103085*n^4 + 794709*n^3)*a(n + 5) +
(492*n^6 + 9*n^7 + 11032560 + 11359*n^5 + 143385*n^4 + 1067026*n^3 + 4671483*n^2 + 11110486*n)*a(n + 6) + (1021680 + 1041*n^4 + 17838*n^3 + 150699*n^2 + 626358*n + 24*n^5)*a(n + 7) + (461340 + 7027*n^3 + 9*n^5 + 61461*n^2 + 267044*n + 399*n^4)*a(n + 8) + (100980 + 5751*n^2 + 9*n^4 + 39408*n + 372*n^3)*a(n + 9) + (-6414*n - 588*n^2 - 18*n^3 - 23364)*a(n + 10) + (-48*n - 528)*a(n + 11) + 24*a(n + 12) = 0.
Differential equation satisfied by the exponential generating function: {F(0) = 1, 9*t^4*(t^4 + t + t^2 - 2)^2*(d^2/dt^2)F(t) + 3*t*(-4*t^6 + 8*t^5 - 16*t + t^10 - 16*t^2 + 2*t^7 + 8 - 2*t^4 + 2*t^8 + 10*t^3)*(t^4 + t + t^2 - 2)*(d/dt)F(t) - t^2*(t^4 + t + t^2 - 2)*(t^10 - 2*t^9 - 6*t^7 - 12*t^6 + t^5 - t^4 + 39*t^3 - 10*t^2 + 24)*F(t)}.
Satisfies the recurrence (of order 8): 12*(81*n^4 - 837*n^3 + 2997*n^2 - 4326*n + 1987)*a(n) = 18*(n-1)*(81*n^4 - 810*n^3 + 2709*n^2 - 3435*n + 1036)*a(n-1) + 3*(n-1)*(243*n^6 - 2997*n^5 + 14499*n^4 - 35118*n^3 + 44823*n^2 - 26766*n + 3244)*a(n-2) + 3*(n-2)*(n-1)*(81*n^5 - 1080*n^4 + 4968*n^3 - 9825*n^2 + 7666*n - 178)*a(n-3) + (n-3)*(n-2)*(n-1)*(243*n^5 - 2430*n^4 + 8721*n^3 - 13896*n^2 + 8637*n - 2468)*a(n-4) + (n-4)*(n-3)*(n-2)*(n-1)*(405*n^4 - 3537*n^3 + 11934*n^2 - 15915*n + 6008)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(243*n^5 - 2916*n^4 + 11799*n^3 - 19593*n^2 + 11382*n + 502)*a(n-6) + (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(162*n^4 - 1026*n^3 + 2241*n^2 - 1884*n + 182)*a(n-7) - (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^4 - 513*n^3 + 972*n^2 - 519*n - 98)*a(n-8). - Vaclav Kotesovec, Sep 10 2014
a(n) ~ 3^(n/2) * exp(sqrt(3*n) - 3*n/2 - 5/4) * n^(3*n/2) / 2^(n + 1/2) * (1 + 23/(24*sqrt(3*n))). - Vaclav Kotesovec, Nov 04 2023, extended Nov 06 2023
Extensions
Edited and extended by Max Alekseyev, Apr 28 2010
Comments