cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110040 Number of {2,3}-regular graphs; i.e., labeled simple graphs (no multi-edges or loops) on n vertices, each of degree 2 or 3.

Original entry on oeis.org

1, 0, 0, 1, 10, 112, 1760, 35150, 848932, 24243520, 805036704, 30649435140, 1322299270600, 64008728200384, 3447361661136640, 205070807479444088, 13388424264027157520, 953966524932871436800, 73817914562041635228928
Offset: 0

Views

Author

Marni Mishna, Jul 08 2005

Keywords

Comments

P-recursive.
Starting at n=3, number of symmetric binary matrices with all row sums 3. - R. H. Hardin, Jun 12 2008
From R. J. Mathar, Apr 07 2017: (Start)
These are the row sums of the following matrix, which counts symmetric n X n {0,1} matrices with each row and column sum equal to 3 and trace t, 0 <= t <= n:
0: 1
1: 0 0
2: 0 0 0
3: 0 0 0 1
4: 1 0 6 0 3
5: 0 30 0 70 0 12
6: 70 0 810 0 810 0 70
7: 0 5670 0 19355 0 9660 0 465
This has A001205 on the diagonal. (End)
The traceless (2n) X (2n) binary matrices in that triangle seem to be counted in A002829. - Alois P. Heinz, Apr 07 2017

Examples

			(Graphs listed by edgeset)
a(3)=1: {(1,2), (2,3), (3,1)}
a(4)=10: {(1,2), (2,3), (3,4), (4,1)}, {(1,2), (2,3), (3,4), (4,1), (1,4)}, {(1,2), (2,3), (3,4), (4,1), (2,3)}, {(1,2), (2,4), (3,4), (1,3)}, {(1,2), (2,4), (3,4), (1,3), (2,3)}, {(1,2), (2,4), (3,4), (1,3), (1,4)}, {(1,3), (2,3), (2,4), (1,4)}, {(1,3), (2,3), (2,4), (1,4), (1,2)}, {(1,3), (2,3), (2,4), (1,4), (3,4)}, {(1,2), (1,3), (1,4) (2,3), (2,4), (3,4)},
		

References

  • Tan and S. Gao, Enumeration of (0,1)-Symmetric Matrices, submitted [From Shanzhen Gao, Jun 05 2009]

Crossrefs

Cf. A000986 (sums 2), A000085 (sums 1), A139670 (sums 3).

Programs

  • Mathematica
    RecurrenceTable[{-b[n] - b[1 + n] + (-2 + 3*n)*b[2 + n] - 14*b[3 + n] + (105 + 30*n)*b[4 + n] + (-69 - 12*n)*b[5 + n] + (582 + 147*n + 9*n^2)* b[6 + n] + (-20 - 6*n)*b[7 + n] + (1160 + 363*n + 27*n^2)*b[8 + n] + (1554 + 255*n + 9*n^2)* b[9 + n] + (-2340 - 414*n - 18*n^2)*b[10 + n] + (-528 - 48*n)*b[11 + n] + (288 + 24*n)*b[12 + n] == 0, b[0] == 1, b[1] == 0, b[2] == 0, b[3] == 1/6, b[4] == 5/12, b[5] == 14/15, b[6] == 22/9, b[7] == 3515/504, b[8] == 30319/1440, b[9] == 10823/162, b[10] == 8385799/37800, b[11] == 510823919/665280}, b, {n, 0, 25}] * Range[0, 25]! (* Vaclav Kotesovec, Oct 23 2023 *)

Formula

Satisfies the linear recurrence: (-150917976*n^2 - 105258076*n^3 - 1925*n^9 - 13339535*n^5 - 45995730*n^4 - 357423*n^7 - 2637558*n^6 - 120543840*n - n^11 - 66*n^10 - 39916800 - 32670*n^8)*a(n) + (-11028590*n^4 - 65*n^9 - n^10 - 2310945*n^5 - 1860*n^8 - 30810*n^7 - 326613*n^6 - 80627040*n - 39916800 - 34967140*n^3 - 70290936*n^2)*a(n + 1) + (3*n^10 - 39916800 + 187*n^9 + 5076*n^8 + 78558*n^7 + 761103*n^6 + 4757403*n^5 + 18949074*n^4 + 44946092*n^3 + 51046344*n^2 - 793440*n)*a(n + 2) + (-93139200 - 16175880*n^3 - 56394184*n^2 - 110513760*n - 2854446*n^4 - 14*n^8 - 840*n^7 - 21756*n^6 - 317520*n^5)*a(n + 3) + (45780*n^6 + 1785*n^7 + 111580320*n^2 + 660450*n^5 + 5856270*n^4 + 32645865*n^3 + 174636000 + 213450300*n + 30*n^8)*a(n + 4) + (-22952160 - 681*n^6 - 16419*n^5 - 217995*n^4 - 8082204*n^2 - 20896956*n - 12*n^7 - 1721253*n^3)*a(n + 5) + (1804641*n^3 + 9*n^7 + 14442*n^5 + 208920*n^4 + 32266080 + 9307488*n^2 + 26537388*n + 552*n^6)*a(n + 6) + (-158400 - 15160*n - 3994*n^3 - 31072*n^2 - 6*n^5 - 248*n^4)*a(n + 7) + (20123*n^3 + 706210*n + 27*n^5 + 170067*n^2 + 1148400 + 1173*n^4)*a(n + 8) + (7899*n^2 + 60684*n + 444*n^3 + 9*n^4 + 170940)*a(n + 9) + (-6894*n - 25740 - 18*n^3 - 612*n^2)*a(n + 10) + (-48*n - 528)*a(n + 11) + 24*a(n + 12).
Differential equation satisfied by the exponential generating function {F(0) = 1, 9*t^4*(t^4 + t - 2 + 3*t^2)^2*(d^2/dt^2)F(t) + 3*t*(t^4 + t - 2 + 3*t^2)*(10*t^8 + 34*t^3 - 16*t + 16*t^6 - 2*t^5 - 24*t^2 - 4*t^7 + 8 + t^10 - 14*t^4)*(d/dt)F(t) - t^3*(-22*t^2 + t^8 - 24*t^3 + t^9 + 8*t^7 + 14*t^6 + 15*t^5 + 12 + 16*t + 9*t^4)*(t^4 + t - 2 + 3*t^2)*F(t)}.
Sum_{a_2 = 0..n} Sum_{d_2 = 0..min(floor((3n - 2a_2)/2), floor(n/2), n - a_2)} Sum_{d_3 = 0..min(floor((3n - 2a_2 - 2d_2)/3), floor((n-2d_2)/3), n - a_2 - d_2} Sum_{d_1 = 0..min(3n - 2a_2 - 2d_2 - 3d_3, n - 2d_2 - 3d_3) Sum_{b = 0..min(floor((3n - 2a_2 - 2d_2 - 3d_3 - d_1)/4), floor((n - d_2 - d_3 - a_2)/2)} Sum_{c = 0..min(floor((3n - 2a_2 - 2d_2 - 3d_3 - d_1 - 4b)/6), floor((n - a_2 - 2b - d_2 - d_3)/2))} Sum_{a_1 = ceiling((3n - (2a_2 + 4b + 6c + d_1 + 2d_2 + 3d_3))/2)..floor((3n - (2a_2 + 4b + 6c + d_1 + 2d_2 + 3d_3))/2)} (-1)^(a_2 + b + d_2)*n!*(2a_1 + d_1)!/(2^(n + a_1 - c - d_3)*3^(n - a_2 - 2b - d_2 - c)*a_1!*a_2!*b!*c!*d_1!*d_2!*d_3!*(n - a_2 - 2b - d_2 - 2c - d_3)!). - Shanzhen Gao, Jun 05 2009
Recurrence (of order 8): 12*(27*n^4 - 423*n^3 + 2427*n^2 - 5639*n + 4384)*a(n) = 6*(n-1)*(81*n^4 - 1242*n^3 + 7011*n^2 - 15528*n + 10352)*a(n-1) + 3*(n-2)*(n-1)*(81*n^5 - 1269*n^4 + 7551*n^3 - 20841*n^2 + 29934*n - 16040)*a(n-2) - 3*(n-2)*(n-1)*(135*n^5 - 2115*n^4 + 13287*n^3 - 37537*n^2 + 46430*n - 21848)*a(n-3) + (n-3)*(n-2)*(n-1)*(567*n^5 - 9396*n^4 + 59895*n^3 - 169590*n^2 + 191744*n - 57040)*a(n-4) - 2*(n-4)*(n-3)*(n-2)*(n-1)*(135*n^4 - 1386*n^3 + 5034*n^2 - 6529*n + 648)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^5 - 1566*n^4 + 11367*n^3 - 37080*n^2 + 47872*n - 17424)*a(n-6) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(27*n^4 - 315*n^3 + 1113*n^2 - 1433*n + 348)*a(n-7) - (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(27*n^4 - 315*n^3 + 1320*n^2 - 1946*n + 776)*a(n-8). - Vaclav Kotesovec, Oct 23 2023
a(n) ~ 3^(n/2) * n^(3*n/2) / (2^(n + 1/2) * exp(3*n/2 - sqrt(3*n) + 13/4)) * (1 + 119/(24*sqrt(3*n)) - 2519/(3456*n)). - Vaclav Kotesovec, Oct 27 2023, extended Oct 28 2023

Extensions

Edited and extended by Max Alekseyev, May 08 2010

A136282 Number of graphs on n labeled nodes with degree at most 3.

Original entry on oeis.org

1, 2, 8, 64, 768, 12068, 236926, 5651384, 160054952, 5284391984, 200375581984, 8620342917808, 416471882713712, 22400989824444576, 1331457489258580672, 86887134810544955072, 6189888588922841477824, 478992737680928902742656, 40082045451011806706919808, 3612470757307682016196841216, 349398857659776033845292636416
Offset: 1

Views

Author

Don Knuth, Mar 31 2008

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Cf. A000085 (degree at most 1), A136281-A136286.

Formula

Binomial transform of A110041. - Vladeta Jovovic, May 20 2008
Recurrence: 12*(81*n^4 - 837*n^3 + 3375*n^2 - 6171*n + 4192)*a(n) = 6*(243*n^5 - 2511*n^4 + 10665*n^3 - 21969*n^2 + 19476*n - 4624)*a(n-1) + 3*(n-1)*(243*n^6 - 2997*n^5 + 15147*n^4 - 39843*n^3 + 57594*n^2 - 41832*n + 10888)*a(n-2) - 3*(n-2)*(n-1)*(405*n^5 - 3699*n^4 + 13527*n^3 - 22629*n^2 + 14048*n + 388)*a(n-3) + (n-3)*(n-2)*(n-1)*(243*n^5 - 1944*n^4 + 6777*n^3 - 9738*n^2 - 2370*n + 10732)*a(n-4) + 2*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^4 - 999*n^3 + 4968*n^2 - 8646*n + 4906)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(243*n^5 - 2916*n^4 + 12933*n^3 - 27990*n^2 + 27978*n - 8948)*a(n-6) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^4 - 513*n^3 + 891*n^2 - 357*n - 242)*a(n-7) - (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^4 - 513*n^3 + 1350*n^2 - 1608*n + 640)*a(n-8). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 3^(n/2) * exp(sqrt(3*n) - 3*n/2 - 5/4) * n^(3*n/2) / 2^(n + 1/2) * (1 + 71/(24*sqrt(3*n))). - Vaclav Kotesovec, Nov 05 2023
a(n) / A110041(n) ~ 1 + 2/sqrt(3*n). - Vaclav Kotesovec, Nov 06 2023

Extensions

More terms from Vladeta Jovovic, May 20 2008
Showing 1-2 of 2 results.