A110066
Numbers n such that 10^n - prime(n) is prime.
Original entry on oeis.org
2, 5, 40, 69, 586, 927, 1393, 11411, 32741, 79040
Offset: 1
-
Do[If[PrimeQ[10^n - Prime[n]], Print[n]], {n, 10800}]
-
is(n)=ispseudoprime(10^n-prime(n)) \\ Charles R Greathouse IV, May 15 2013
A110065
Numbers k such that 10^k - k is prime.
Original entry on oeis.org
3, 23, 171, 903, 9911, 48107, 48449, 60959
Offset: 1
-
is(n)=isprime(10^n-n) \\ Charles R Greathouse IV, Feb 17 2017
-
from sympy import isprime
def afind(limit):
m, pow10 = 0, 1
while m <= limit:
if isprime(pow10 - m): print(m, end=", ")
m, pow10 = m + 1, pow10 * 10
afind(1000) # Michael S. Branicky, Mar 23 2021
A174176
Numbers n such that 10^n-2*n+1 is prime.
Original entry on oeis.org
2, 5, 14, 42, 72, 74, 354, 1176, 1274, 4815, 6885, 28214
Offset: 1
-
/* The code gives only the terms up to 354: */ [n: n in [1..600] | IsPrime(10^n-2*n+1) ]
-
Select[Range[5000], PrimeQ[(10^# - 2 # + 1)] &] (* Vincenzo Librandi, Oct 05 2012 *)
-
is(n)=ispseudoprime(10^n-2*n+1) \\ Charles R Greathouse IV, Feb 20 2017
A174177
Numbers k such that 10^k-2*k-1 is prime.
Original entry on oeis.org
1, 5, 11, 14, 19, 55, 101, 560, 805, 3188, 4441, 25733, 37501
Offset: 1
-
[n: n in [1..550] | IsPrime(10^n-2*n-1) ];
-
Select[Range[5000], PrimeQ[(10^# - 2*# - 1)] &] (* Vincenzo Librandi, Oct 05 2012 *)
-
for(n=1, 999, ispseudoprime(10^n-2*n-1) && print1(n", ")) \\ M. F. Hasler, Aug 06 2011
A193881
Numbers n such that 10^n-sigma(n^2) is prime.
Original entry on oeis.org
7, 52, 446, 614, 1137, 4852, 5615, 22154, 71291
Offset: 1
-
[n: n in [1..450] | IsPrime(10^n-DivisorSigma(1,n^2))]; // Vincenzo Librandi, Mar 26 2015
-
Select[Range[1000], PrimeQ[10^# - DivisorSigma[1, #^2]] &] (* Robert Price, Mar 24 2015 *)
-
for(n=1, 9999, ispseudoprime(t=10^n-sigma(n^2)) && print1(n", "))
A193825
Primes of the form 10^n-prime(n).
Original entry on oeis.org
97, 99989, 9999999999999999999999999999999999999827, 999999999999999999999999999999999999999999999999999999999999999999653
Offset: 1
A193882
Numbers k such that 10^k+sigma(k^2) is prime.
Original entry on oeis.org
1, 2, 3, 8, 13, 15, 19, 20, 41, 47, 50, 76, 100, 162, 204, 310, 318, 536, 2502, 4016, 5612, 5849, 52753, 64843
Offset: 1
-
Select[Range[0, 1000], PrimeQ[10^# + DivisorSigma[1, #^2]] &] (* Robert Price, May 08 2015 *)
-
for(n=1, 9999, ispseudoprime(10^n+sigma(n^2)) && print1(n", "))
A256451
Numbers n such that 10^n + prime(n) is prime.
Original entry on oeis.org
2, 4, 27, 63, 756, 899, 8088, 15216, 47969, 50943
Offset: 1
4 is in this sequence since the fourth prime is 7 and 10^4+7=10007 is prime.
-
[n: n in [1..770] | IsPrime(NthPrime(n) + 10^n)]; // Vincenzo Librandi, Mar 30 2015
-
Select[Range[100000], PrimeQ[10^# + Prime[#]] &]
-
for(n=1,10^3,if(ispseudoprime(10^n+prime(n)),print1(n,", "))) \\ Derek Orr, Mar 29 2015
Showing 1-8 of 8 results.
Comments