cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A132007 Triangle, read by rows, where T(n,k) = T(n,k-1) + n*T(n-1,k-1) for n>0 and k>0, with T(n,0) = T(n-1,n-1) for n>0 and T(0,0) = 1.

Original entry on oeis.org

1, 1, 2, 2, 4, 8, 8, 14, 26, 50, 50, 82, 138, 242, 442, 442, 692, 1102, 1792, 3002, 5212, 5212, 7864, 12016, 18628, 29380, 47392, 78664, 78664, 115148, 170196, 254308, 384704, 590364, 922108, 1472756, 1472756, 2102068, 3023252, 4384820, 6419284
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2007

Keywords

Comments

Column 0 and main diagonal (offset) equals A110083.

Examples

			Triangle begins:
1;
1, 2;
2, 4, 8;
8, 14, 26, 50;
50, 82, 138, 242, 442;
442, 692, 1102, 1792, 3002, 5212;
5212, 7864, 12016, 18628, 29380, 47392, 78664;
78664, 115148, 170196, 254308, 384704, 590364, 922108, 1472756;
1472756, 2102068, 3023252, 4384820, 6419284, 9496916, 14219828, 21596692, 33378740; ...
		

Crossrefs

Cf. A110083 (column 0); A132008 (row sums).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 0 || n < k, 0, If[n == 0 && k == 0, 1, If[k == 0, T[n - 1, n - 1], T[n, k - 1] + n*T[n - 1, k - 1]]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 15 2017 *)
  • PARI
    T(n,k)=if(k<0 || n
    				

Formula

T(n+1,0) = Sum_{k=0..n} (n!/k!)*C(n,k)*T(k,0) for n>=0 with T(0,0)=1.

A132008 Row sums of triangle A132007.

Original entry on oeis.org

1, 3, 14, 98, 954, 12242, 199156, 3988248, 96094356, 2735515916, 90647239704, 3453539346232, 149695821098056, 7316061672718152, 400012182207670288, 24301065118906010048, 1630456684740565109904, 120168318315515773499952
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2007

Keywords

Comments

Triangle T=A132007 is defined by: T(n,k) = T(n,k-1) + n*T(n-1,k-1) for n>=k>0, with T(n,0) = T(n-1,n-1) for n>0 and T(0,0) = 1; also, column 0 (A110083) obeys: T(n+1,0) = Sum_{k=0..n} (n!/k!)*C(n,k)*T(k,0).

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 0 || n < k, 0, If[n == 0 && k == 0, 1, If[k == 0, T[n - 1, n - 1], T[n, k - 1] + n*T[n - 1, k - 1]]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Dec 15 2017 *)
  • PARI
    { T(n, k)=if(k<0 || nG. C. Greubel, Dec 15 2017

A331660 E.g.f. A(x) satisfies: d/dx A(x) = 1 + (1/(1 - x)) * A(x/(1 - x)).

Original entry on oeis.org

1, 1, 5, 32, 280, 3280, 49480, 927560, 21037640, 566134160, 17803754560, 646052181520, 26757321804880, 1252934215973600, 65791336312915520, 3846554938702140320, 248841434876849499040, 17713758333248102781760, 1380631354206969100115200
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 0; Do[A[x] = Normal[Integrate[1 + 1/(1 - x) A[x/(1 - x) + O[x]^(terms + 1)], x] + O[x]^(terms + 1)], terms]; CoefficientList[A[x], x] Range[0, terms]! // Rest
    a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k]^2 k! a[n - k - 1], {k, 0, n - 2}]; Table[a[n], {n, 1, 20}]

Formula

a(1) = 1; a(n+1) = Sum_{k=0..n-1} binomial(n,k)^2 * k! * a(n-k).

A336243 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * (n-k-1)! * a(k).

Original entry on oeis.org

1, 1, 5, 56, 1114, 34624, 1549648, 94402356, 7511324448, 756406501200, 94039208461584, 14146468841290752, 2532586289913605088, 532113978869395649856, 129662518122880634567232, 36270261084908437106586624, 11543682123659880166705099776
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 13 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[1/(1 - Sum[x^k/(k k!), {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!^2
    nmax = 16; Assuming[x > 0, CoefficientList[Series[1/(1 + EulerGamma - ExpIntegralEi[x] + Log[x]), {x, 0, nmax}], x]] Range[0, nmax]!^2

Formula

a(n) = (n!)^2 * [x^n] 1 / (1 - Sum_{k>=1} x^k / (k*k!)).
Showing 1-4 of 4 results.