cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A110188 3-almost primes p * q * r not relatively prime to p+q+r.

Original entry on oeis.org

8, 18, 27, 30, 42, 50, 66, 70, 78, 98, 102, 105, 110, 114, 125, 130, 138, 154, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 242, 246, 255, 258, 266, 282, 285, 286, 290, 310, 318, 322, 338, 343, 354, 357, 366, 370, 374, 402, 406, 410, 418, 426, 429, 430
Offset: 1

Views

Author

Jonathan Vos Post, Jul 15 2005

Keywords

Comments

A110187 is the converse, 3-almost primes p * q * r which are relatively prime to p+q+r.

Examples

			a(1) = 8 because 8 = 2^3, which has a prime factor 2 in common with prime 2 + 2 + 2 = 6.
30 is in the sequence, since 30 = 2 * 3 * 5, which is in fact divisible by 2 + 3 + 5 = 10.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2, lim\4, forprime(q=2, min(p, lim\2\p), my(pq=p*q, t); forprime(r=2, min(lim\pq, q), t=r*pq; if(gcd(t, p+q+r)>1, listput(v, t))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

Extended by Ray Chandler, Jul 20 2005

A110227 4-almost primes p * q * r * s relatively prime to p + q + r + s.

Original entry on oeis.org

40, 54, 56, 88, 90, 104, 135, 136, 152, 184, 189, 198, 210, 225, 232, 248, 250, 294, 296, 297, 306, 328, 344, 350, 351, 376, 390, 414, 424, 441, 459, 462, 472, 488, 513, 522, 536, 546, 550, 568, 570, 584, 621, 632, 664, 686, 712, 714, 735, 738, 765, 776
Offset: 1

Views

Author

Jonathan Vos Post, Jul 16 2005

Keywords

Comments

p, q, r, s are not necessarily distinct. The converse to this is A110228: 4-almost primes p * q * r * s not relatively prime to p+q+r+s.

Examples

			104 is in this sequence because 104 = 2^3 * 13, which is relatively prime to 2 + 2 + 2 + 13 = 19, which is prime.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim\8, forprime(q=2,min(p,lim\4\p), my(pq=p*q); forprime(r=2,min(lim\pq\2,q), my(pqr=pq*r,t); forprime(s=2,min(lim\pqr,r), t=pqr*s; if(gcd(t,p+q+r+s)==1, listput(v,t)))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

Corrected and extended by Ray Chandler, Jul 20 2005

A110228 4-almost primes p * q * r * s not relatively prime to p + q + r + s.

Original entry on oeis.org

16, 24, 36, 60, 81, 84, 100, 126, 132, 140, 150, 156, 196, 204, 220, 228, 234, 260, 276, 308, 315, 330, 340, 342, 348, 364, 372, 375, 380, 444, 460, 476, 484, 490, 492, 495, 510, 516, 525, 532, 558, 564, 572, 580, 585, 620, 625, 636, 644, 650, 666, 676, 690
Offset: 1

Views

Author

Jonathan Vos Post, Jul 16 2005

Keywords

Comments

p, q, r, s are not necessarily distinct. The converse to this is A110227: 4-almost primes p * q * r * s which are relatively prime to p+q+r+s.

Examples

			84 is in this sequence because 84 = 2^2 * 3 * 7 and the sum of these prime factors is 2 + 2 + 3 + 7 = 14 = 2 * 7, which is a divisor of 84.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim\8, forprime(q=2,min(p,lim\4\p), my(pq=p*q); forprime(r=2,min(lim\pq\2,q), my(pqr=pq*r,t); forprime(s=2,min(lim\pqr,r), t=pqr*s; if(gcd(t,p+q+r+s)>1, listput(v,t)))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

Corrected and extended by Ray Chandler, Jul 20 2005

A110229 5-almost primes p * q * r * s * t relatively prime to p + q + r + s + t.

Original entry on oeis.org

48, 80, 108, 112, 176, 208, 252, 272, 300, 304, 368, 405, 420, 464, 468, 496, 500, 567, 592, 656, 660, 675, 684, 688, 752, 848, 891, 924, 944, 976, 980, 1020, 1053, 1072, 1116, 1136, 1140, 1168, 1264, 1300, 1323, 1328, 1332, 1372, 1377, 1424, 1428, 1452
Offset: 1

Views

Author

Jonathan Vos Post, Jul 17 2005

Keywords

Comments

p, q, r, s, t are not necessarily distinct. The converse to this is A110230: 5-almost primes p * q * r * s * t which are not relatively prime to p+q+r+s+t. A014614 is the 5-almost primes.

Examples

			48 is in this sequence because 48 = 2^4 * 3, which has no factors in common with 2 + 2 + 2 + 2 + 3 = 11.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2, lim\16, forprime(q=2, min(p, lim\8\p), my(pq=p*q); forprime(r=2, min(lim\pq\4, q), my(pqr=pq*r); forprime(s=2, min(lim\pqr\2, r), my(pqrs=pqr*s,n); forprime(t=2,min(lim\pqrs,s), n=pqrs*t; if(gcd(n, p+q+r+s+t)==1, listput(v, n))))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

Extended by Ray Chandler, Jul 20 2005
Incorrect formula and comment of Sep 2009 related to A002033 deleted - R. J. Mathar, Oct 14 2009

A110230 5-almost primes p * q * r * s * t not relatively prime to p + q + r + s + t.

Original entry on oeis.org

32, 72, 120, 162, 168, 180, 200, 243, 264, 270, 280, 312, 378, 392, 396, 408, 440, 450, 456, 520, 552, 588, 594, 612, 616, 630, 680, 696, 700, 702, 728, 744, 750, 760, 780, 828, 882, 888, 918, 920, 945, 952, 968, 984, 990, 1026, 1032, 1044, 1050, 1064, 1092
Offset: 1

Views

Author

Jonathan Vos Post, Jul 17 2005

Keywords

Comments

p, q, r, s, t are not necessarily distinct. The converse to this is A110229: 5-almost primes p * q * r * s * t which are relatively prime to p+q+r+s+t. A014614 is the 5-almost primes.

Examples

			180 is in this sequence because 180 = 2^2 * 3^2 * 5, the sum of the prime factors being 2 + 2 + 3 + 3 + 5 = 15 = 3 * 5 which has two prime factors in common with 180.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2, lim\16, forprime(q=2, min(p, lim\8\p), my(pq=p*q); forprime(r=2, min(lim\pq\4, q), my(pqr=pq*r); forprime(s=2, min(lim\pqr\2, r), my(pqrs=pqr*s,n); forprime(t=2,min(lim\pqrs,s), n=pqrs*t; if(gcd(n, p+q+r+s+t)>1, listput(v, n))))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

Extended by Ray Chandler, Jul 20 2005

A110231 6-almost primes p * q * r * s * t * u relatively prime to p+q+r+s+t+u.

Original entry on oeis.org

96, 224, 352, 360, 416, 486, 504, 544, 600, 608, 736, 792, 810, 928, 936, 992, 1000, 1176, 1184, 1224, 1312, 1368, 1376, 1400, 1504, 1656, 1696, 1701, 1782, 1888, 1890, 1952, 2025, 2040, 2088, 2144, 2184, 2200, 2232, 2250, 2272, 2336, 2528, 2600, 2646
Offset: 1

Views

Author

Jonathan Vos Post, Jul 17 2005

Keywords

Comments

p, q, r, s, t, u are not necessarily distinct. The converse to this is A110232: 6-almost primes p * q * r * s * t * u which are not relatively prime to p+q+r+s+t+u. A046306 is the 6-almost primes.

Examples

			96 is an element of this sequence because 96 = 2^5 * 3, the sum of whose prime factors is 2 + 2 + 2 + 2 + 2 + 3 = 13, which has no prime factors in common with 96.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2, lim\32, forprime(q=2, min(p, lim\16\p), my(pq=p*q); forprime(r=2, min(lim\pq\8, q), my(pqr=pq*r); forprime(s=2, min(lim\pqr\4, r), my(pqrs=pqr*s); forprime(t=2,min(lim\pqrs\2,s), my(pqrst=pqrs*t,n); forprime(u=2,min(lim\pqrst,t), n=pqrst*u; if(gcd(n, p+q+r+s+t+u)==1, listput(v, n)))))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

Extended by Ray Chandler, Jul 20 2005

A110232 6-almost primes p * q * r * s * t * u not relatively prime to p+q+r+s+t+u.

Original entry on oeis.org

64, 144, 160, 216, 240, 324, 336, 400, 528, 540, 560, 624, 729, 756, 784, 816, 840, 880, 900, 912, 1040, 1104, 1134, 1188, 1215, 1232, 1260, 1320, 1350, 1360, 1392, 1404, 1456, 1488, 1500, 1520, 1560, 1764, 1776, 1836, 1840, 1848, 1904, 1936, 1960, 1968
Offset: 1

Views

Author

Jonathan Vos Post, Jul 17 2005

Keywords

Comments

p, q, r, s, t, u are not necessarily distinct. The converse to this is A110231: 6-almost primes p * q * r * s * t * u which are relatively prime to p+q+r+s+t+u. A046306 is the 6-almost primes.

Examples

			160 is in this sequence because 160 = 2^5 * 5, the sum of whose prime factors is 2 + 2 + 2 + 2 + 2 + 5 = 15 = 3 * 5, which has a prime factor in common with 160.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2, lim\16, forprime(q=2, min(p, lim\8\p), my(pq=p*q); forprime(r=2, min(lim\pq\4, q), my(pqr=pq*r); forprime(s=2, min(lim\pqr\2, r), my(pqrs=pqr*s); forprime(t=2,min(lim\pqrs,s), my(pqrst=pqrs*t,n); forprime(u=2,min(lim\pqrst,t), n=pqrst*u; if(gcd(n, p+q+r+s+t+u)>1, listput(v, n)))))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

Extended by Ray Chandler, Jul 20 2005

A110289 7-almost primes p*q*r*s*t*u*v relatively prime to p+q+r+s+t+u+v.

Original entry on oeis.org

320, 432, 448, 704, 720, 832, 972, 1088, 1216, 1472, 1584, 1680, 1856, 1984, 2000, 2268, 2352, 2368, 2448, 2624, 2700, 2752, 3008, 3120, 3312, 3392, 3645, 3696, 3776, 3904, 3920, 4176, 4212, 4288, 4368, 4400, 4544, 4672, 5056, 5103, 5200, 5312, 5488
Offset: 1

Views

Author

Jonathan Vos Post, Jul 18 2005

Keywords

Comments

The primes p, q, r, s, t, u, v are not necessarily distinct. The 7-almost primes are A046308. The converse, A110290, is 7-almost primes p*q*r*s*t*u*v which are not relatively prime to p+q+r+s+t+u+v.
Contains p*q^6 if p and q are distinct primes, p >= 5. - Robert Israel, Jan 13 2017

Examples

			832 = 2^6 * 13 is in this sequence because its sum of prime factors is 2 + 2 + 2 + 2 + 2 + 2 + 13 = 25 = 5^2, which has no factor in common with 832.
		

Crossrefs

Programs

  • Maple
    N:= 10^4: # to get all terms <= N
    P:= select(isprime, [$1..N/2^6]):
    nP:= nops(P):
    Res:= {}:
    for p in P do
      for q in P while q <= p and p*q*2^5 <= N do
        for r in P while r <= q and p*q*r*2^4 <= N do
          for s in P while s <= r and p*q*r*s*2^3 <= N do
            for t in P while t <= s and p*q*r*s*t*2^2 <= N do
              for u in P while u <= t and p*q*r*s*t*u*2 <= N do
                for v in P while v <= u and p*q*r*s*t*u*v <= N do
                  if igcd(p+q+r+s+t+u+v,p*q*r*s*t*u*v) = 1 then
                      Res:= Res union {p*q*r*s*t*u*v} fi
    od od od od od od od:
    sort(convert(Res,list)); # Robert Israel, Jan 13 2017
  • Mathematica
    Select[Range[6000],PrimeOmega[#]==7&&CoprimeQ[Total[ Times@@@ FactorInteger[ #]],#]&] (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    sopfr(n)=local(f);if(n<1,0,f=factor(n);sum(k=1,matsize(f)[1],f[k,1]*f[k,2]))
    isok(n)=bigomega(n)==7&&gcd(n, sopfr(n))==1 \\ Rick L. Shepherd, Jul 20 2005

Extensions

Extended by Ray Chandler and Rick L. Shepherd, Jul 20 2005

A110290 7-almost primes p*q*r*s*t*u*v not relatively prime to p+q+r+s+t+u+v.

Original entry on oeis.org

128, 192, 288, 480, 648, 672, 800, 1008, 1056, 1080, 1120, 1200, 1248, 1458, 1512, 1568, 1620, 1632, 1760, 1800, 1824, 1872, 2080, 2187, 2208, 2376, 2430, 2464, 2520, 2640, 2720, 2736, 2784, 2800, 2808, 2912, 2976, 3000, 3040, 3402, 3528, 3552, 3564
Offset: 1

Views

Author

Jonathan Vos Post, Jul 18 2005

Keywords

Comments

The primes p, q, r, s, t, u, v are not necessarily distinct. The 7-almost primes are A046308. The converse, A110289, is 7-almost primes p*q*r*s*t*u*v which are relatively prime to p+q+r+s+t+u+v.

Examples

			800 = 2^5 * 5^2 is in this sequence because the sum of prime factors 2 + 2 + 2 + 2 + 2 + 5 + 5 = 20 is not relatively prime to 800 (in fact, it is a divisor of 800).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4000],PrimeOmega[#]==7&&!CoprimeQ[Total[Flatten[Table[ #[[1]], #[[2]]]&/@ FactorInteger[#]]],#]&] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    sopfr(n)=local(f);if(n<1,0,f=factor(n);sum(k=1,matsize(f)[1],f[k,1]*f[k,2]))
    isok(n)=bigomega(n)==7&&gcd(n, sopfr(n))>1 \\ Rick L. Shepherd, Jul 20 2005

Extensions

Extended by Ray Chandler and Rick L. Shepherd, Jul 20 2005

A110296 8-almost primes p*q*r*s*t*u*v*w relatively prime to p+q+r+s+t+u+v+w.

Original entry on oeis.org

384, 640, 864, 1408, 1664, 2016, 2176, 2400, 2432, 2944, 3240, 3712, 3744, 3968, 4374, 4536, 4736, 5248, 5280, 5472, 5504, 5600, 6016, 6240, 6784, 7128, 7392, 7552, 7808, 7840, 8424, 8576, 8800, 8928, 9088, 9120, 9344, 10112, 10400, 10584, 10624
Offset: 1

Views

Author

Jonathan Vos Post, Jul 18 2005

Keywords

Comments

The primes p, q, r, s, t, u, v, w are not necessarily distinct. The 8-almost primes are A046310. The converse, A110297, is 8-almost primes p*q*r*s*t*u*v*w which are not relatively prime to p+q+r+s+t+u+v+w.

Examples

			864 is an element of this sequence because 864 = 2^5 * 3^3, so the sum of prime factors is 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 = 19 which is prime, hence relatively prime to 864. That is the same sum of prime factors as 640 = 2^7 * 5, hence 640 is also a member of this sequence. The sum of prime factors need not be prime for this membership, for example, 2432 = 2^7 * 19 has sum of prime factors 2 + 2 + 2 + 2 + 2 + 2 + 2 + 19 = 33 = 3 * 11, which is composite, yet relatively prime to 2432.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2, lim\128, forprime(q=2, min(p, lim\64\p), my(pq=p*q); forprime(r=2, min(lim\pq\32, q), my(pqr=pq*r); forprime(s=2, min(lim\pqr\16, r), my(pqrs=pqr*s); forprime(t=2, min(lim\pqrs\8, s), my(pqrst=pqrs*t); forprime(u=2, min(lim\pqrst\4, t), my(pqrstu=pqrst*u); forprime(w=2,min(lim\pqrstu\2,u), my(pqrstuw=pqrstu*w,n); forprime(x=2,min(lim\pqrstuw,w), n=pqrstuw*x; if(gcd(n, p+q+r+s+t+u+w+x)==1, listput(v, n)))))))))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Extensions

Corrected and extended by Ray Chandler, Jul 20 2005
Showing 1-10 of 12 results. Next