A110197 Number triangle of sums of squared binomial coefficients.
1, 2, 1, 3, 5, 1, 4, 14, 10, 1, 5, 30, 46, 17, 1, 6, 55, 146, 117, 26, 1, 7, 91, 371, 517, 251, 37, 1, 8, 140, 812, 1742, 1476, 478, 50, 1, 9, 204, 1596, 4878, 6376, 3614, 834, 65, 1, 10, 285, 2892, 11934, 22252, 19490, 7890, 1361, 82, 1, 11, 385, 4917, 26334, 66352, 82994, 51990, 15761, 2107, 101, 1
Offset: 0
Examples
Rows start: 1; 2, 1; 3, 5, 1; 4, 14, 10, 1; 5, 30, 46, 17, 1; 6, 55, 146, 117, 26, 1; ...
Crossrefs
Programs
-
PARI
T(n,k) = sum(i=0, n-k, binomial(i+k,k)^2); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print();); \\ Michel Marcus, Dec 03 2016
Formula
T(n,k) = Sum_{i=0..n-k} binomial(i+k,k)^2.
G.f.: 1/((1-x)*sqrt(x^2*y^2-2*x^2*y-2*x*y+x^2-2*x+1)). - Vladimir Kruchinin, Mar 20 2025
Comments