cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110206 Row sums of triangle A110205, where A110205(n,k) equals the sum of cubes of numbers < 2^n having exactly k ones in their binary expansion.

Original entry on oeis.org

1, 36, 784, 14400, 246016, 4064256, 66064384, 1065369600, 17112825856, 274341298176, 4393752592384, 70334388633600, 1125625045712896, 18012199553335296, 288212784234102784, 4611545282012774400
Offset: 1

Views

Author

Paul D. Hanna, Jul 16 2005

Keywords

Crossrefs

Cf. A110205 (triangle), A110207 (central terms).

Programs

  • Magma
    [Binomial(2^n,2)^2: n in [1..30]]; // G. C. Greubel, Oct 02 2024
    
  • Mathematica
    Binomial[2^Range[30], 2]^2 (* G. C. Greubel, Oct 02 2024 *)
  • PARI
    a(n)=polcoeff(x*(1+8*x)/((1-4*x)*(1-8*x)*(1-16*x)+x*O(x^n)),n)
    
  • SageMath
    def A110206(n): return binomial(2^n, 2)^2
    [A110206(n) for n in range(1,31)] # G. C. Greubel, Oct 02 2024

Formula

G.f.: x*(1+8*x)/( (1-4*x)*(1-8*x)*(1-16*x) ).
From G. C. Greubel, Oct 02 2024: (Start)
a(n) = ( binomial(2^n, 2) )^2 = 4^(n-1)*(2^n - 1)^2.
E.g.f.: (1/4)*(exp(4*x) - 2*exp(8*x) + exp(16*x)). (End)