A110255 Numerators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x.
1, 3, 5, 28, 81, 704, 325, 768, 20825, 311296, 83349, 1507328, 1334025, 3145728, 5337189, 130023424, 1366504425, 7516192768, 5466528925, 12884901888, 87470372561, 2954937499648, 349899121845, 12919261626368, 22394407746529
Offset: 1
Examples
arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-... = [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x, 768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x, 1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...] = 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))). The coefficients of x in the even-indexed partial quotients converge to Pi: {3, 28/9, 704/225, 768/245, 311296/99225, ...}. The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: {1, 5/4, 81/64, 325/256, 20825/16384, ...}.
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..400
Crossrefs
Programs
-
PARI
{a(n)=numerator(subst((contfrac( sum(k=0,n,(-1)^k/x^(2*k+1)/(2*k+1)),n+1))[n+1],x,1))}
Comments