cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110276 Convolution of large Schroeder numbers and central binomial coefficients.

Original entry on oeis.org

1, 4, 16, 66, 280, 1218, 5422, 24666, 114540, 542278, 2614178, 12814102, 63772982, 321754290, 1643263134, 8483485886, 44214343344, 232362906298, 1230090777342, 6553657204178, 35113127086114, 189062666857686, 1022459506515674
Offset: 0

Views

Author

Paul Barry, Jul 18 2005

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x-Sqrt(1-6*x+x^2))/(2*x*Sqrt(1-4*x)) )); // G. C. Greubel, Sep 24 2021
    
  • Mathematica
    CoefficientList[Series[(1-x-(Sqrt[1-6*x+x^2]))/(2x*Sqrt[1-4*x]), {x,0,30}], x] (* Georg Fischer, Apr 09 2020 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*k, k)*sum(j=0, n-k, binomial(n-k+j, n-k)*binomial(n-k, j)/(j+1))); \\ Michel Marcus, Sep 25 2021
  • Sage
    def A110276_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)) ).list()
    A110276_list(30)
    

Formula

G.f.: (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)). - corrected by Georg Fischer, Apr 09 2020
a(n) = Sum_{k=0..n} C(2*k, k)*( Sum_{j=0..n-k} C(n-k+j, n-k)*C(n-k, j)/(j+1) ).
a(n) = Sum_{k=0..n} A000984(k)*A006318(n-k).
a(n) ~ sqrt(4 + sqrt(2)) * (1 + sqrt(2))^(2*n + 2) / (2*sqrt(7*Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 14 2021