cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110299 a(n) = Sum_{i=0..n-1} 2^i*prime(n-i).

Original entry on oeis.org

2, 7, 19, 45, 101, 215, 447, 913, 1849, 3727, 7485, 15007, 30055, 60153, 120353, 240759, 481577, 963215, 1926497, 3853065, 7706203, 15412485, 30825053, 61650195, 123300487, 246601075, 493202253, 986404613, 1972809335, 3945618783, 7891237693, 15782475517
Offset: 1

Views

Author

Ryan Propper, Sep 07 2005

Keywords

References

  • Eric Angelini, "Array with primes." Pers. comm. on the SeqFan mailing list, Sep. 7 2005.

Crossrefs

Programs

  • Magma
    A110299:= func< n | (&+[2^(n-j)*NthPrime(j): j in [1..n]]) >;
    [A110299(n): n in [1..40]]; // G. C. Greubel, Jan 03 2023
    
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 0, ithprime(n)+2*a(n-1))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Dec 10 2016
  • Mathematica
    Table[Sum[2^i * Prime[n-i], {i, 0, n-1}], {n, 1, 30}]
  • PARI
    a(n) = fromdigits(primes(n),2); \\ Kevin Ryde, Jun 22 2022
    
  • Python
    from sympy import prime
    def A110299(n):
        c = 0
        for i in range(n):
            c = (c<<1)+prime(i+1)
        return c # Chai Wah Wu, Jan 04 2023
  • SageMath
    @CachedFunction # a = A110299
    def a(n): return 2 if (n==1) else 2*a(n-1) + nth_prime(n)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jan 03 2023
    

Formula

G.f: b(x)/(1-2*x), where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 10 2016
a(n) = 2*a(n-1) + A000040(n) for n>0 with a(0)=0. - Alois P. Heinz, Dec 10 2016
From Ridouane Oudra, Jan 25 2024: (Start)
a(n) = Sum_{i=0..prime(n+1)-1} (2^(n-pi(i)) - 1), where prime(n) = A000040(n) and pi(n) = A000720(n).
a(n) = A125180(n+1) - A000040(n+1);
a(n) = Sum_{i=1..n} A125180(i);
a(n) = A007504(n) + Sum_{i=1..n-1} a(i). (End)