cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359518 Integers k such that A110299(k) is prime.

Original entry on oeis.org

1, 2, 3, 5, 10, 17, 21, 28, 38, 50, 86, 88, 100, 375, 408, 630, 646, 1241, 1860, 4359, 15444, 17916, 74901, 91968, 101121
Offset: 1

Views

Author

Michel Marcus, Jan 04 2023

Keywords

Comments

Integers k such that Sum_{i=0..k-1} 2^i*prime(k-i) is prime.

Examples

			For these k, A110299(k) is 2, 7, 19, 101, 3727, 481577, 7706203, 986404613, ... all prime.
		

Crossrefs

Cf. A110299.

Programs

  • PARI
    isok(k) = isprime(fromdigits(primes(k), 2));

Extensions

a(20)-a(22) from Pontus von Brömssen, Jan 04 2023
a(23)-a(25) from Michael S. Branicky, Oct 02 2024

A125180 a(n) = 2*a(n-1) + prime(n) - prime(n-1), a(1)=2, where prime(n) denotes the n-th prime.

Original entry on oeis.org

2, 5, 12, 26, 56, 114, 232, 466, 936, 1878, 3758, 7522, 15048, 30098, 60200, 120406, 240818, 481638, 963282, 1926568, 3853138, 7706282, 15412568, 30825142, 61650292, 123300588, 246601178, 493202360, 986404722, 1972809448, 3945618910
Offset: 1

Views

Author

Gary W. Adamson, Nov 22 2006

Keywords

Comments

Row sums of A125179.
Limit_{n->oo} a(n)/a(n-1) = 2.

Examples

			a(4)=26 because 4*prime(1)+2*prime(2)+prime(3)+prime(4) = 8+6+5+7 = 26.
		

Crossrefs

Programs

  • Magma
    [n eq 1 select 2 else 2*Self(n-1)+NthPrime(n)-NthPrime(n-1):n in [1..31]]; // Marius A. Burtea, Oct 17 2019
  • Maple
    a[1]:=2: for n from 2 to 35 do a[n]:=2*a[n-1]+ithprime(n)-ithprime(n-1) od: seq(a[n],n=1..35);
  • Mathematica
    a[1] = 2; a[n_] := 2*a[n - 1] + Prime[n] - Prime[n - 1]; Table[a[n], {n, 1, 31}] (* James C. McMahon, Dec 10 2023 *)

Formula

a(n) = prime(n) + Sum_{j=1..n-1} 2^(n-j-1)*prime(j), where prime(k) denotes the k-th prime.
a(n) = Sum_{i=0..prime(n)-1} 2^(n-1-pi(i)), where prime(n) = A000040(n) and pi(n) = A000720(n). - Ridouane Oudra, Oct 17 2019
a(1) = 2 and a(n) = prime(n) + Sum_{i=1..n-1} a(i) for n > 1. - Alexandre Herrera, Dec 10 2023
a(n) = A000040(n) + A110299(n-1), for n > 1. - Ridouane Oudra, Jul 27 2025

Extensions

Edited by N. J. A. Sloane, Dec 02 2006

A287353 a(0)=0; for n>0, a(n) = 10*a(n-1) + prime(n).

Original entry on oeis.org

0, 2, 23, 235, 2357, 23581, 235823, 2358247, 23582489, 235824913, 2358249159, 23582491621, 235824916247, 2358249162511, 23582491625153, 235824916251577, 2358249162515823, 23582491625158289
Offset: 0

Views

Author

Luke Zieroth, May 23 2017

Keywords

Crossrefs

Cf. A379426 (prime terms).

Programs

  • Mathematica
    FoldList[10 #1 + Prime@ #2 &, 0, Range@ 17] (* Michael De Vlieger, May 24 2017 *)
  • PARI
    a(n) = fromdigits(primes(n)); \\ Kevin Ryde, Jun 22 2022
  • Python
    from sympy import prime
    l = [0]
    for i in range(20):
        l += [10 * l[i] + prime(i + 1)]
    print(l) # Indranil Ghosh, May 25 2017
    

Formula

a(n) = Sum_{i=1..n} 10^(n-i)*prime(i), n >= 1. - Ya-Ping Lu, Dec 24 2024

A135483 a(n) = Sum_{j=1..n} prime(j)*2^(j-2).

Original entry on oeis.org

1, 4, 14, 42, 130, 338, 882, 2098, 5042, 12466, 28338, 66226, 150194, 326322, 711346, 1579698, 3513010, 7510706, 16292530, 34904754, 73177778, 156015282, 330078898, 703371954, 1517066930, 3211565746, 6667672242, 13848320690, 28478053042, 58811259570
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 07 2008

Keywords

Crossrefs

Partial sums of A239885.

Programs

  • Mathematica
    Table[Sum[2^(i-2) * Prime[i], {i, 1, n}], {n, 1, 10}] (* G. C. Greubel, Oct 15 2016 *)
    Accumulate[Table[Prime[i]*2^(i-2),{i,30}]] (* Harvey P. Dale, Aug 14 2019 *)
  • PARI
    a(n) = sum(k=1, n, prime(k)*2^(k-2)); \\ Michel Marcus, Oct 15 2016

A354973 a(0)=0; for n > 0, a(n) = 2*a(n-1) if n-1 is prime, a(n-1) + 1 otherwise.

Original entry on oeis.org

0, 1, 2, 4, 8, 9, 18, 19, 38, 39, 40, 41, 82, 83, 166, 167, 168, 169, 338, 339, 678, 679, 680, 681, 1362, 1363, 1364, 1365, 1366, 1367, 2734, 2735, 5470, 5471, 5472, 5473, 5474, 5475, 10950, 10951, 10952, 10953, 21906, 21907, 43814, 43815, 43816, 43817, 87634
Offset: 0

Views

Author

Ben White, Jun 14 2022

Keywords

Examples

			5 is prime, so a(6) = 2*a(5) = 2*9 = 18.
6 is not prime, so a(7) = a(6) + 1 = 18 + 1 = 19.
		

Crossrefs

Cf. A110299.

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = If[PrimeQ[n - 1], 2*a[n - 1], a[n - 1] + 1]; Array[a, 50, 0] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(k=primepi(n-1)); fromdigits(primes(k),2) - 1<Kevin Ryde, Jun 22 2022
  • Python
    from sympy import isprime
    a = [0]; [a.append(2*a[-1] if isprime(n) else a[-1]+1) for n in range(48)]
    print(a) # Michael S. Branicky, Jun 21 2022
    

Formula

a(n) = A110299(k) - 2^k + n + 1, where k = primepi(n-1) and taking A110299(0) = 0. - Kevin Ryde, Jun 22 2022
Showing 1-5 of 5 results.