A110331 Row sums of a number triangle related to the Pell numbers.
1, -1, -5, -11, -19, -29, -41, -55, -71, -89, -109, -131, -155, -181, -209, -239, -271, -305, -341, -379, -419, -461, -505, -551, -599, -649, -701, -755, -811, -869, -929, -991, -1055, -1121, -1189, -1259, -1331, -1405, -1481, -1559, -1639, -1721, -1805, -1891, -1979, -2069, -2161, -2255, -2351, -2449
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[1-n-n^2: n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
-
Mathematica
CoefficientList[Series[(1-4x+x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *) LinearRecurrence[{3,-3,1},{1,-1,-5},60] (* Harvey P. Dale, Mar 22 2022 *)
-
PARI
a(n)=1-n-n^2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 1-n-n^2.
G.f.: (1-4*x+x^2)/(1-x)^3.
a(n) = binomial(n+2, 2) - 4*binomial(n+1, 2) + binomial(n, 2).
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 08 2012
E.g.f.: exp(x)*(1-2*x-x^2). - Tom Copeland, Dec 02 2013
Comments