cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110331 Row sums of a number triangle related to the Pell numbers.

Original entry on oeis.org

1, -1, -5, -11, -19, -29, -41, -55, -71, -89, -109, -131, -155, -181, -209, -239, -271, -305, -341, -379, -419, -461, -505, -551, -599, -649, -701, -755, -811, -869, -929, -991, -1055, -1121, -1189, -1259, -1331, -1405, -1481, -1559, -1639, -1721, -1805, -1891, -1979, -2069, -2161, -2255, -2351, -2449
Offset: 0

Views

Author

Paul Barry, Jul 20 2005

Keywords

Comments

Row sums of A110330. Results from a general construction: the row sums of the inverse of the number triangle whose columns have e.g.f. (x^k/k!)/(1-a*x-b*x^2) have g.f. (1-(a+2)x-(2b-a-1)x^2)/(1-x)^3 and general term 1+(b-a)*n-b*n^2. This is the binomial transform of (1,-a,-2b,0,0,0,...).
Hankel transform of A007054(n)-2*0^n. - Paul Barry, Jul 20 2008

Crossrefs

Cf. A028387 (absolute values). A165900 is another version.

Programs

Formula

a(n) = 1-n-n^2.
G.f.: (1-4*x+x^2)/(1-x)^3.
a(n) = binomial(n+2, 2) - 4*binomial(n+1, 2) + binomial(n, 2).
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 08 2012
E.g.f.: exp(x)*(1-2*x-x^2). - Tom Copeland, Dec 02 2013
a(n) = -A165900(n+1) (= -A028387(n-1) for n > 0). - M. F. Hasler, Mar 01 2014