cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110382 Numbers which are sum of distinct unary numbers (containing only ones), i.e., numbers which are sum of distinct numbers of the form (10^k - 1)/9.

Original entry on oeis.org

1, 11, 12, 111, 112, 122, 123, 1111, 1112, 1122, 1123, 1222, 1223, 1233, 1234, 11111, 11112, 11122, 11123, 11222, 11223, 11233, 11234, 12222, 12223, 12233, 12234, 12333, 12334, 12344, 12345, 111111, 111112, 111122, 111123, 111222, 111223
Offset: 1

Views

Author

Amarnath Murthy, Jul 25 2005

Keywords

Comments

Not the same as A096299, since a(1023) = 1234567900 which is not in lexicographic order. - Ralf Stephan, May 17 2007

Crossrefs

Cf. A096299.

Programs

  • Maple
    f:= proc(n) local L,i:
      L:= convert(n,base,2);
      add(L[i]*(10^i-1)/9, i=1..nops(L))
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 03 2025
  • Mathematica
    Nest[Append[#1, 10 #1[[Floor[#2/2] ]] + DigitCount[#2, 2, 1]] & @@ {#, Length[#] + 1} &, {1}, 36] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    a(n) = sum(k=0, log(n)\log(2), hammingweight(n\(2^k))*10^k); \\ Michel Marcus, May 09 2019
    
  • PARI
    a(n) = my(b = Vecrev(binary(n))); sum(i = 1, #b, b[i] * (10^i-1)) / 9 \\ David A. Corneth, May 19 2019

Formula

G.f.: 1/(1-x) * Sum_{k>=0} (10^(k+1) - 1)/9 * x^2^k/(1 + x^2^k). - Ralf Stephan, May 17 2007
a(n) = 10*a(floor(n/2)) + A000120(n) = Sum_{k=0..floor(log_2(n))} A000120(floor(n/(2^k)))*10^k. - Mikhail Kurkov, May 08 2019
a(n) = a(floor(n/2)) + A007088(n) = (10*A007088(n) - A000120(n))/9. - Mikhail Kurkov, Mar 03 2021

Extensions

a(1024) ff. corrected by Georg Fischer, Feb 03 2025