A110447 Number of permutations containing 3241 patterns only as part of 35241 patterns.
1, 1, 2, 6, 23, 104, 531, 2982, 18109, 117545, 808764, 5862253, 44553224, 353713232, 2924697019, 25124481690, 223768976093, 2062614190733, 19646231085928, 193102738376890, 1956191484175505, 20401540100814142, 218825717967033373, 2411606083999341827
Offset: 0
Keywords
Links
- David Callan, A combinatorial interpretation of the eigensequence for composition, arXiv:math/0507169 [math.CO], 2005.
- David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
- David Callan, A Wilf equivalence related to two stack sortable permutations, arXiv:math/0510211 [math.CO], 2005.
- David Callan, Lagrange Inversion Counts 3bar-5241-Avoiding Permutations, J. Int. Seq. 14 (2011) # 11.9.4
- Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.
Crossrefs
This sequence is A030266 shifted left.
Programs
-
Maple
A:= proc(n) option remember; unapply(`if`(n=0, x, A(n-1)(x)+coeff(A(n-1)(A(n-1)(x)), x, n) *x^(n+1)), x) end: a:= n-> coeff(A(1+n)(x), x, 1+n): seq(a(n), n=0..23); # Alois P. Heinz, Jul 10 2023
-
Mathematica
(* The following recurrence for a(n) is derived in the first linked paper *) a[0]=c[1]=1 a[n_]/;n>=1 := a[n] = Sum[a[i]c[n-i], {i, 0, n-1}] c[n_]/;n>=2 := c[n] = Sum[i a[n-1, i], {i, n-1}] a[n_, k_]/;1<=k<=n-1 := a[n, k] = Sum[a[i]a[n-1-i, j], {i, 0, k-1}, {j, k-i, n-1-i}] a[ n_, n_ ]/;n>=1 := a[n, n] = a[n-1] (* The following Mathematica code generates all the permutations counted by a(n). Run the code; then Aset[n] returns the permutations counted by a(n). *) Aset[0] = { { } } Aset[1] = { {1} } Cset[1] = { {1} } Aset[n_, n_ ]/;n>=1 := Aset[n, n ] = Map[Join[{n}, # ]&, Aset[n-1 ] ] processBn[n_, single_, i_] := Module[{base=Drop[Range[n], {i}]}, Join[{i}, base[[single]] ] ] Cset[n_]/;n>=2 := Cset[n] = Flatten[Table[Map[processBn[n, #, i]&, Aset[n-1, j-1]], {j, 2, n}, {i, j-1}], 2] processAn[pair_, j_]:=Module[{p1=pair[[1]], p2=pair[[2]]}, Flatten[Insert[j+p2, p1, 2] ] ] Aset[ n_ ]/;n>=2 := Aset[ n ] = Flatten[ Table[ Map[ processAn[ #, j ]&, CartesianProduct[ Aset[ j ], Cset[ n-j ] ] ], {j, 0, n-1} ], 1 ] processAnk[n_, k_, pair_, j_]:=Module[{p1=pair[[1]], p2=pair[[2]], base}, base=Complement[Range[j+1, n], {k}]; Join[{k}, p1, base[[p2]]] ] Aset[ n_, k_ ]/;1<=k<=n-1 := Aset[ n, k ] = Flatten[ Table[ Map[ processAnk[ n, k, #, j ]&, CartesianProduct[ Aset[ j ], Aset[ n-1-j, r ] ] ], {j, 0, k-1}, {r, k-j, n-1-j} ], 2 ]
Comments