cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110494 Least k such that prime(n)^2 divides binomial(2k,k).

Original entry on oeis.org

3, 5, 13, 25, 61, 85, 145, 181, 265, 421, 481, 685, 841, 925, 1105, 1405, 1741, 1861, 2245, 2521, 2665, 3121, 3445, 3961, 4705, 5101, 5305, 5725, 5941, 6385, 8065, 8581, 9385, 9661, 11101, 11401, 12325, 13285, 13945, 14965, 16021, 16381, 18241, 18625, 19405
Offset: 1

Views

Author

T. D. Noe, Jul 22 2005

Keywords

Comments

For prime p > sqrt(2n), p^2 does not divide binomial(2n,n).

Crossrefs

Cf. A110493 (largest prime p such that p^2 divides binomial(2n, n)).

Programs

  • Mathematica
    t=Table[f=FactorInteger[Binomial[2n, n]]; s=Select[f, #[[2]]>1&]; If[s=={}, 0, s[[ -1, 1]]], {n, 100}]; Table[p=Prime[i]; First[Flatten[Position[t, p]]], {i, PrimePi[Max[t]]}]
    lk[n_]:=Module[{k=1,c=Prime[n]^2},While[!Divisible[Binomial[2k,k],c], k=k+2]; k]; Array[lk,40] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    fv(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=my(p=prime(n),k=p^2\2+1); while(fv(2*k,p)-2*fv(k,p)<2,k++); k \\ Charles R Greathouse IV, Mar 27 2014
    
  • PARI
    a(n)=prime(n)^2\2+1 \\ Charles R Greathouse IV, Mar 27 2014

Formula

a(n) = (prime(n)^2+1)/2 for n > 1.
a(n) = A066885(n), n > 1. - R. J. Mathar, Aug 18 2008