A110493 Largest prime p such that p^2 divides binomial(2n,n), or 0 if binomial(2n,n) is squarefree.
0, 0, 0, 2, 0, 3, 2, 2, 3, 2, 2, 2, 2, 5, 5, 3, 3, 3, 5, 5, 3, 2, 2, 5, 5, 7, 7, 7, 2, 2, 2, 2, 7, 7, 7, 3, 2, 2, 5, 7, 7, 7, 3, 5, 5, 3, 7, 7, 7, 5, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 11, 11, 11, 11, 11, 5, 5, 5, 5, 5, 5, 11, 11, 11, 11, 11, 3, 5, 5, 3, 7, 7, 11, 11, 13, 13, 13, 13, 13, 13, 5, 5, 5, 11, 11
Offset: 0
Examples
a(5) = 3 because binomial(10,5) = 252 = (2^2)(3^2)(7).
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- T. D. Noe, Plot of A110493
- A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107, [DOI].
Programs
-
Maple
f:= proc(n) local F; F:= select(t -> t[2]>=2, ifactors(binomial(2*n,n))[2]); if F = [] then 0 else max(map(t -> t[1],F)) fi end proc: map(f, [$0..100]); # Robert Israel, Sep 04 2019
-
Mathematica
Table[f=FactorInteger[Binomial[2n, n]]; s=Select[f, #[[2]]>1&]; If[s=={}, 0, s[[-1,1]]], {n, 0, 100}]
Extensions
a(0) prepended by T. D. Noe, Mar 27 2014
Comments