cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A110493 Largest prime p such that p^2 divides binomial(2n,n), or 0 if binomial(2n,n) is squarefree.

Original entry on oeis.org

0, 0, 0, 2, 0, 3, 2, 2, 3, 2, 2, 2, 2, 5, 5, 3, 3, 3, 5, 5, 3, 2, 2, 5, 5, 7, 7, 7, 2, 2, 2, 2, 7, 7, 7, 3, 2, 2, 5, 7, 7, 7, 3, 5, 5, 3, 7, 7, 7, 5, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 11, 11, 11, 11, 11, 5, 5, 5, 5, 5, 5, 11, 11, 11, 11, 11, 3, 5, 5, 3, 7, 7, 11, 11, 13, 13, 13, 13, 13, 13, 5, 5, 5, 11, 11
Offset: 0

Views

Author

T. D. Noe, Jul 22 2005

Keywords

Comments

Binomial(2n,n) is squarefree for only n = 0, 1, 2, 4. Sequence A059097 lists n such that a(n) = 0 or 2. The plot shows the quadratic nature of this sequence. Sequence A110494 makes the quadratic behavior clearer.
Granville and Ramaré show that if n >= 2082 then a(n) >= sqrt(n/5). - Robert Israel, Sep 04 2019

Examples

			a(5) = 3 because binomial(10,5) = 252 = (2^2)(3^2)(7).
		

Crossrefs

Cf. A110494 (least k such that prime(n)^2 divides binomial(2k, k)).

Programs

  • Maple
    f:= proc(n) local F;
      F:= select(t -> t[2]>=2, ifactors(binomial(2*n,n))[2]);
      if F = [] then 0 else max(map(t -> t[1],F)) fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Sep 04 2019
  • Mathematica
    Table[f=FactorInteger[Binomial[2n, n]]; s=Select[f, #[[2]]>1&]; If[s=={}, 0, s[[-1,1]]], {n, 0, 100}]

Extensions

a(0) prepended by T. D. Noe, Mar 27 2014

A239622 Conjecturally, the irregular triangle of numbers k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).

Original entry on oeis.org

0, 1, 2, 4, 3, 6, 7, 9, 10, 11, 12, 21, 22, 28, 29, 30, 31, 36, 37, 54, 55, 57, 58, 110, 171, 784, 786, 5, 8, 15, 16, 17, 20, 35, 42, 45, 50, 51, 52, 53, 56, 59, 60, 77, 80, 133, 134, 135, 136, 156, 157, 158, 159, 160, 161, 170, 210, 211, 212, 400, 401, 402, 651, 652, 785
Offset: 0

Views

Author

T. D. Noe, Mar 27 2014

Keywords

Comments

Row 0 lists the numbers k such that binomial(2k,k) is squarefree. Sequence A110494 lists the first term of each row; A239623 lists the conjectured last term; A239624 lists the conjectured length of each row.

Examples

			The irregular triangle begins:
0, 1, 2, 4
3, 6, 7, 9,..., 784, 786
5, 8, 15, 16,..., 652, 785
13, 14, 18, 19,..., 445, 2080
25, 26, 27, 32,..., 783, 902
61, 62, 63, 64,..., 2033, 2034
		

Crossrefs

Cf. A059097 (union of first two rows), A110493, A110494, A239623, A239624.

Programs

  • Mathematica
    b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 20000}]; t = Join[{0}, t]; Table[Flatten[Position[t, p]] - 1, {p, Join[{0}, Prime[Range[20]]]}]

A239623 Conjecturally, the largest k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).

Original entry on oeis.org

4, 786, 785, 2080, 902, 2034, 2079, 1086, 2081, 2090, 1652, 2562, 3905, 8185, 4987, 3507, 5562, 2713, 3584, 4191, 8285, 9319, 12237, 12117, 12248, 9311, 8180, 8399, 9308, 20123, 11977, 11683, 12261, 14365, 15403, 20114, 16867, 19938, 19559, 20316, 24706
Offset: 0

Views

Author

T. D. Noe, Mar 27 2014

Keywords

Comments

The last number in row n of A239622. The 0th term is the largest number k such that binomial(2k,k) is squarefree. The first 41 terms were checked by computing binomial(2k,k) for k <= 10^5. See the plot in A110493.

Crossrefs

Programs

  • Mathematica
    b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 25000}]; t = Join[{0}, t]; Table[Flatten[Position[t, p]][[-1]] - 1, {p, Join[{0}, Prime[Range[20]]]}]

A155185 Primes in A155175.

Original entry on oeis.org

5, 13, 113, 1741, 5101, 8581, 9941, 21841, 26681, 47741, 82013, 481181, 501001, 1009621, 2356621, 2542513, 3279361, 3723721, 4277813, 7757861, 8124481, 13204661, 25311613, 30772013, 44170601, 48619661, 51521401, 52541501, 54236113, 60731221, 72902813
Offset: 1

Views

Author

Keywords

Comments

Hypotenuse C (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes. p=1,q=2,a=3,b=4,c=5=prime,s=12-+1primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[c],AppendTo[lst,c]]],{n,8!}];lst (* corrected by Ray Chandler, Feb 11 2020 *)

Extensions

Sequence corrected by Ray Chandler, Feb 11 2020

A239624 Conjecturally, the number of numbers k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).

Original entry on oeis.org

4, 23, 38, 50, 51, 54, 65, 70, 107, 127, 127, 165, 155, 150, 239, 287, 280, 179, 336, 314, 230, 453, 423, 600, 612, 419, 246, 454, 455, 892, 1117, 624, 916, 432, 1115, 363, 934, 1061, 763, 1073, 1203, 524, 1523, 559, 1278, 735, 2221, 1987, 929, 475, 1179, 1605
Offset: 0

Views

Author

T. D. Noe, Mar 27 2014

Keywords

Comments

The 0th term is the largest number k such that binomial(2k,k) is squarefree.

Crossrefs

Programs

  • Mathematica
    b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 20000}]; t = Join[{0}, t]; Table[Length[Position[t, p]], {p, Join[{0}, Prime[Range[20]]]}]

A155186 Primes in A155171.

Original entry on oeis.org

2, 7, 29, 101, 107, 197, 227, 457, 647, 829, 1549, 1627, 2221, 2309, 2347, 2521, 2677, 2801, 3181, 3299, 3529, 3541, 3557, 3739, 3769, 4231, 4549, 4871, 4987, 5651, 5827, 5881, 6037, 6079, 6637, 6827, 7517, 7639, 7937, 9787, 11621, 12041, 12329, 13009
Offset: 1

Views

Author

Keywords

Comments

Numbers p (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[p],AppendTo[lst,p]]],{n,8!}];lst

A155187 Prime numbers q of primitive Pythagorean triangles such that perimeters are averages of twin prime pairs, p+1=q(prime), a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

2, 3, 11, 71, 227, 491, 683, 1103, 1187, 2591, 3923, 4271, 4931, 6737, 7193, 7703, 8093, 8753, 8963, 9173, 9377, 10271, 13043, 13451, 13997, 15233, 15443, 15803, 15887, 17957, 18701, 19961, 20681, 21701, 22031, 22073, 24371, 24473, 24683
Offset: 1

Views

Author

Keywords

Comments

p=1, q=2(prime), a=3, b=4, c=5, s=12-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[q],AppendTo[lst,q]]],{n,8!}];lst
Showing 1-7 of 7 results.