cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A110494 Least k such that prime(n)^2 divides binomial(2k,k).

Original entry on oeis.org

3, 5, 13, 25, 61, 85, 145, 181, 265, 421, 481, 685, 841, 925, 1105, 1405, 1741, 1861, 2245, 2521, 2665, 3121, 3445, 3961, 4705, 5101, 5305, 5725, 5941, 6385, 8065, 8581, 9385, 9661, 11101, 11401, 12325, 13285, 13945, 14965, 16021, 16381, 18241, 18625, 19405
Offset: 1

Views

Author

T. D. Noe, Jul 22 2005

Keywords

Comments

For prime p > sqrt(2n), p^2 does not divide binomial(2n,n).

Crossrefs

Cf. A110493 (largest prime p such that p^2 divides binomial(2n, n)).

Programs

  • Mathematica
    t=Table[f=FactorInteger[Binomial[2n, n]]; s=Select[f, #[[2]]>1&]; If[s=={}, 0, s[[ -1, 1]]], {n, 100}]; Table[p=Prime[i]; First[Flatten[Position[t, p]]], {i, PrimePi[Max[t]]}]
    lk[n_]:=Module[{k=1,c=Prime[n]^2},While[!Divisible[Binomial[2k,k],c], k=k+2]; k]; Array[lk,40] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    fv(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=my(p=prime(n),k=p^2\2+1); while(fv(2*k,p)-2*fv(k,p)<2,k++); k \\ Charles R Greathouse IV, Mar 27 2014
    
  • PARI
    a(n)=prime(n)^2\2+1 \\ Charles R Greathouse IV, Mar 27 2014

Formula

a(n) = (prime(n)^2+1)/2 for n > 1.
a(n) = A066885(n), n > 1. - R. J. Mathar, Aug 18 2008

A239622 Conjecturally, the irregular triangle of numbers k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).

Original entry on oeis.org

0, 1, 2, 4, 3, 6, 7, 9, 10, 11, 12, 21, 22, 28, 29, 30, 31, 36, 37, 54, 55, 57, 58, 110, 171, 784, 786, 5, 8, 15, 16, 17, 20, 35, 42, 45, 50, 51, 52, 53, 56, 59, 60, 77, 80, 133, 134, 135, 136, 156, 157, 158, 159, 160, 161, 170, 210, 211, 212, 400, 401, 402, 651, 652, 785
Offset: 0

Views

Author

T. D. Noe, Mar 27 2014

Keywords

Comments

Row 0 lists the numbers k such that binomial(2k,k) is squarefree. Sequence A110494 lists the first term of each row; A239623 lists the conjectured last term; A239624 lists the conjectured length of each row.

Examples

			The irregular triangle begins:
0, 1, 2, 4
3, 6, 7, 9,..., 784, 786
5, 8, 15, 16,..., 652, 785
13, 14, 18, 19,..., 445, 2080
25, 26, 27, 32,..., 783, 902
61, 62, 63, 64,..., 2033, 2034
		

Crossrefs

Cf. A059097 (union of first two rows), A110493, A110494, A239623, A239624.

Programs

  • Mathematica
    b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 20000}]; t = Join[{0}, t]; Table[Flatten[Position[t, p]] - 1, {p, Join[{0}, Prime[Range[20]]]}]

A239623 Conjecturally, the largest k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).

Original entry on oeis.org

4, 786, 785, 2080, 902, 2034, 2079, 1086, 2081, 2090, 1652, 2562, 3905, 8185, 4987, 3507, 5562, 2713, 3584, 4191, 8285, 9319, 12237, 12117, 12248, 9311, 8180, 8399, 9308, 20123, 11977, 11683, 12261, 14365, 15403, 20114, 16867, 19938, 19559, 20316, 24706
Offset: 0

Views

Author

T. D. Noe, Mar 27 2014

Keywords

Comments

The last number in row n of A239622. The 0th term is the largest number k such that binomial(2k,k) is squarefree. The first 41 terms were checked by computing binomial(2k,k) for k <= 10^5. See the plot in A110493.

Crossrefs

Programs

  • Mathematica
    b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 25000}]; t = Join[{0}, t]; Table[Flatten[Position[t, p]][[-1]] - 1, {p, Join[{0}, Prime[Range[20]]]}]

A239624 Conjecturally, the number of numbers k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).

Original entry on oeis.org

4, 23, 38, 50, 51, 54, 65, 70, 107, 127, 127, 165, 155, 150, 239, 287, 280, 179, 336, 314, 230, 453, 423, 600, 612, 419, 246, 454, 455, 892, 1117, 624, 916, 432, 1115, 363, 934, 1061, 763, 1073, 1203, 524, 1523, 559, 1278, 735, 2221, 1987, 929, 475, 1179, 1605
Offset: 0

Views

Author

T. D. Noe, Mar 27 2014

Keywords

Comments

The 0th term is the largest number k such that binomial(2k,k) is squarefree.

Crossrefs

Programs

  • Mathematica
    b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 20000}]; t = Join[{0}, t]; Table[Length[Position[t, p]], {p, Join[{0}, Prime[Range[20]]]}]

A227902 Numbers n such that triangular(n) divides binomial(2n,n).

Original entry on oeis.org

1, 2, 4, 6, 15, 20, 24, 28, 40, 42, 45, 66, 72, 77, 88, 91, 104, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 240, 266, 276, 299, 304, 308, 312, 315, 322, 325, 330, 345, 368, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 464, 468, 476, 480
Offset: 1

Views

Author

Alex Ratushnyak, Oct 14 2013

Keywords

Comments

A014847 is a subsequence.

Examples

			triangular(6)=21, A000984(6)=924. Because 21 divides 924, 6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[480], Mod[Binomial[2 #, #], # (# + 1)/2] == 0 &] (* T. D. Noe, Oct 16 2013 *)
  • PARI
    is(n) = { my(f = factor(binomial(n+1, 2))); for(i = 1, #f~, if(val(2*n, f[i, 1]) - 2*val(n, f[i, 1]) < f[i, 2], return(0) ) ); 1 }
    val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Apr 03 2021
  • Python
    from sympy import binomial
    for n in range(1, 444):
        CBC = binomial(2 * n, n)
        if not CBC % binomial(n + 1, 2):
           print(n, end=",")
    
Showing 1-5 of 5 results.