cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110503 Triangle, read by rows, which shifts one column left under matrix inverse.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -2, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -2, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -2, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -2, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2005

Keywords

Comments

The unsigned columns of the matrix logarithm of this triangle are all equal to A110504.

Examples

			Triangle begins:
  1;
  1,  1;
  1, -1,  1;
  1, -2,  1,  1;
  1, -1,  1, -1,  1;
  1, -1,  1, -2,  1,  1;
  1, -1,  1, -1,  1, -1,  1;
  1, -1,  1, -1,  1, -2,  1,  1;
  1, -1,  1, -1,  1, -1,  1, -1,  1;
  1, -1,  1, -1,  1, -1,  1, -2,  1,  1; ...
The matrix inverse drops the first column:
   1;
  -1,  1;
  -2,  1,  1;
  -1,  1, -1,  1;
  -1,  1, -2,  1,  1;
  -1,  1, -1,  1, -1,  1; ...
The matrix logarithm equals:
     0;
    1/1!,     0;
    3/2!,   -1/1!,   0;
    7/3!,   -3/2!,  1/1!,   0;
   30/4!,   -7/3!,  3/2!, -1/1!,  0;
  144/5!,  -30/4!,  7/3!, -3/2!, 1/1!,   0;
  876/6!, -144/5!, 30/4!, -7/3!, 3/2!, -1/1!, 0; ...
unsigned columns of which all equal A110505.
		

Crossrefs

Cf. A110504 (matrix log), A110505 (column 0 of log).
Cf. A111940 (variant).

Programs

  • PARI
    T(n,k)=matrix(n+1,n+1,r,c,if(r>=c, if(r==c || c%2==1,1,if(r%2==0 && r==c+2,-2,-1))))[n+1,k+1]

Formula

T(n, k) = +1 when k == 0 (mod 2), T(n, k)=-1 when k == 1 (mod 2), except for T(k+2, k) = -2 when k == 1 (mod 2) and T(n, n) = 1.
G.f. for column k of matrix power A110503^m (ignoring leading zeros): cos(m*arccos(1-x^2/2)) + (-1)^k*sin(m*arccos(1-x^2/2))*(1-x/2)/sqrt(1-x^2/4)*(1+x)/(1-x).