A110503 Triangle, read by rows, which shifts one column left under matrix inverse.
1, 1, 1, 1, -1, 1, 1, -2, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -2, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -2, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -2, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, -1, 1; 1, -2, 1, 1; 1, -1, 1, -1, 1; 1, -1, 1, -2, 1, 1; 1, -1, 1, -1, 1, -1, 1; 1, -1, 1, -1, 1, -2, 1, 1; 1, -1, 1, -1, 1, -1, 1, -1, 1; 1, -1, 1, -1, 1, -1, 1, -2, 1, 1; ... The matrix inverse drops the first column: 1; -1, 1; -2, 1, 1; -1, 1, -1, 1; -1, 1, -2, 1, 1; -1, 1, -1, 1, -1, 1; ... The matrix logarithm equals: 0; 1/1!, 0; 3/2!, -1/1!, 0; 7/3!, -3/2!, 1/1!, 0; 30/4!, -7/3!, 3/2!, -1/1!, 0; 144/5!, -30/4!, 7/3!, -3/2!, 1/1!, 0; 876/6!, -144/5!, 30/4!, -7/3!, 3/2!, -1/1!, 0; ... unsigned columns of which all equal A110505.
Programs
-
PARI
T(n,k)=matrix(n+1,n+1,r,c,if(r>=c, if(r==c || c%2==1,1,if(r%2==0 && r==c+2,-2,-1))))[n+1,k+1]
Formula
T(n, k) = +1 when k == 0 (mod 2), T(n, k)=-1 when k == 1 (mod 2), except for T(k+2, k) = -2 when k == 1 (mod 2) and T(n, n) = 1.
G.f. for column k of matrix power A110503^m (ignoring leading zeros): cos(m*arccos(1-x^2/2)) + (-1)^k*sin(m*arccos(1-x^2/2))*(1-x/2)/sqrt(1-x^2/4)*(1+x)/(1-x).
Comments