cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A110504 Triangle, read by rows, which equals the matrix logarithm of the triangle A110503.

Original entry on oeis.org

0, 1, 0, 3, -1, 0, 7, -3, 1, 0, 30, -7, 3, -1, 0, 144, -30, 7, -3, 1, 0, 876, -144, 30, -7, 3, -1, 0, 6084, -876, 144, -30, 7, -3, 1, 0, 48816, -6084, 876, -144, 30, -7, 3, -1, 0, 438624, -48816, 6084, -876, 144, -30, 7, -3, 1, 0, 4389120, -438624, 48816, -6084, 876, -144, 30, -7, 3, -1, 0
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2005

Keywords

Comments

The unsigned columns this triangle are all equal to A110505. Triangle A110503 shifts one column left under matrix inverse.

Examples

			Triangle begins:
0;
1/1!, 0;
3/2!, -1/1!, 0;
7/3!, -3/2!, 1/1!, 0;
30/4!, -7/3!, 3/2!, -1/1!, 0;
144/5!, -30/4!, 7/3!, -3/2!, 1/1!, 0;
876/6!, -144/5!, 30/4!, -7/3!, 3/2!, -1/1!, 0;
6084/7!, -876/6!, 144/5!, -30/4!, 7/3!, -3/2!, 1/1!, 0; ...
Unsigned columns all equal A110505.
Exponential function of matrix equals A110503:
1;
1,1;
1,-1,1;
1,-2,1,1;
1,-1,1,-1,1;
1,-1,1,-2,1,1;
1,-1,1,-1,1,-1,1;
1,-1,1,-1,1,-2,1,1; ...
		

Crossrefs

Cf. A110503 (matrix exponential), A110505 (unsigned columns).

Programs

  • PARI
    T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c, if(r==c || c%2==1,1,if(r%2==0 && r==c+2,-2,-1))))); sum(i=1,#M,-(M^0-M)^i/i)[n+1,k+1]

Formula

T(n, k) = (-1)^k*A110505(n-k).

A110505 Numerators of unsigned columns of triangle A110504: a(n) = n!*A110504(n,0) = (-1)^k*n!*A110504(n+k,k) for all k >= 0.

Original entry on oeis.org

0, 1, 3, 7, 30, 144, 876, 6084, 48816, 438624, 4389120, 48263040, 579242880, 7529552640, 105417365760, 1581231456000, 25299906508800, 430096581734400, 7741753102540800, 147093162635059200, 2941864569520128000
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2005

Keywords

Comments

Triangle A110504 equals the matrix logarithm of triangle A110503.
Triangle A110503 shifts one column left under matrix inverse.
Lim_{n->infinity} a(n)/n! = Pi*2*sqrt(3)/9 = 1.209199576...

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 7*x^3/3! + 30*x^4/4! + 144*x^5/5! + 876*x^6/6! + ...
where A(x) satisfies: A(x)*A(-x) = -arccos(1-1/2*x^2)^2, and
arccos(1-1/2*x^2)^2 = Sum_{n>=0} x^(2*n+2)/( C(2*n+1, n)*(n+1)^2 ) = x^2 + 1/12*x^4 + 1/90*x^6 + 1/560*x^8 + 1/3150*x^10 + ...
		

Crossrefs

Cf. A110503 (triangular matrix), A110504 (matrix logarithm), A002544.

Programs

  • PARI
    /* From relation to unsigned columns of triangle A110504: */
    {a(n)=local(M=matrix(n+1,n+1,r,c,if(r>=c, if(r==c || c%2==1,1,if(r%2==0 && r==c+2,-2,-1))))); n!*sum(i=1,#M,-(M^0-M)^i/i)[n+1,1]}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* As Partial Sums of Series: */
    a(n)=if(n<1,0,n!*(1+sum(n=2,n,(-1)^n/(binomial(n-2,n\2-1)*n*(n-1)/((n+1)\2)))))
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: (2+x-x^2)/(2*(1-x)) * arccos(1-x^2/2) / sqrt(1-x^2/4).
E.g.f. A(x) satisfies:
(1) A(x)*A(-x) = -arccos(1-1/2*x^2)^2 = Sum_{n>=0} -x^(2*n+2)/( C(2*n+1, n)*(n+1)^2 ).
(2) 1/(1-x) = Sum_{n>=1} A(x)^floor((n+1)/2) * A(-x)^floor(n/2)/n!.
a(2*n+1) = (2*n+1)!*(1 + Sum_{k=1..n} (1/binomial(2*k+1, k))/(k+1)).
a(2*n+2) = (2*n+2)!*(1 + 1/2 - Sum_{k=1..n} 1/binomial(2*k+2, k)/k) = n!*(1 + 1/2 - 1/3 + 1/12 - 1/20 + 1/60 - 1/105 + 1/280 -+ ...).
Recurrence: 4*a(n) = 2*(2*n-1)*a(n-1) + (n-2)*(n+1)*a(n-2) - (n-3)*(n-2)*n*a(n-3). - Vaclav Kotesovec, May 09 2014

A111825 Triangle P, read by rows, that satisfies [P^6](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(6*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 96, 36, 1, 1, 6306, 3816, 216, 1, 1, 1883076, 1625436, 139536, 1296, 1, 1, 2700393702, 3121837776, 360839016, 5036256, 7776, 1, 1, 19324893252552, 28794284803908, 4200503990976, 78293629296, 181382976, 46656, 1
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Also P(n,k) = the partitions of (6^n - 6^(n-k)) into powers of 6 <= 6^(n-k).

Examples

			Let q=6; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 4/2!*x^2 + 42/3!*x^3 + 7296/4!*x^4 +... (A111829).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(6*x) + m^3/3!*L(x)*L(6*x)*L(6^2*x) +
m^4/4!*L(x)*L(6*x)*L(6^2*x)*L(6^3*x) + ...
Triangle P begins:
1;
1,1;
1,6,1;
1,96,36,1;
1,6306,3816,216,1;
1,1883076,1625436,139536,1296,1;
1,2700393702,3121837776,360839016,5036256,7776,1; ...
where P^6 shifts columns left and up one place:
1;
6,1;
96,36,1;
6306,3816,216,1; ...
		

Crossrefs

Cf. A111826 (column 1), A111827 (row sums), A111828 (matrix log); triangles: A110503 (q=-1), A078121 (q=2), A078122 (q=3), A078536 (q=4), A111820 (q=5), A111830 (q=7), A111835 (q=8).

Programs

  • PARI
    P(n,k,q=6)=local(A=Mat(1),B);if(n
    				

Formula

Let q=6; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111829).

A111820 Triangle P, read by rows, that satisfies [P^5](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(5*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 55, 25, 1, 1, 2055, 1525, 125, 1, 1, 291430, 311525, 38875, 625, 1, 1, 165397680, 239305275, 40338875, 975625, 3125, 1, 1, 390075741430, 735920617775, 157056792000, 5077475625, 24409375, 15625, 1
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Also P(n,k) = the partitions of (5^n - 5^(n-k)) into powers of 5 <= 5^(n-k).

Examples

			Let q=5; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 3/2!*x^2 + 16/3!*x^3 + 2814/4!*x^4 +... (A111824).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(5*x) + m^3/3!*L(x)*L(5*x)*L(5^2*x) +
m^4/4!*L(x)*L(5*x)*L(5^2*x)*L(5^3*x) + ...
Triangle P begins:
1;
1,1;
1,5,1;
1,55,25,1;
1,2055,1525,125,1;
1,291430,311525,38875,625,1;
1,165397680,239305275,40338875,975625,3125,1; ...
where P^5 shifts columns left and up one place:
1;
5,1;
55,25,1;
2055,1525,125,1;
291430,311525,38875,625,1; ...
		

Crossrefs

Cf. A111821 (column 1), A111822 (row sums), A111823 (matrix log); triangles: A110503 (q=-1), A078121 (q=2), A078122 (q=3), A078536 (q=4), A111825 (q=6), A111830 (q=7), A111835 (q=8).

Programs

  • PARI
    P(n,k,q=5)=local(A=Mat(1),B);if(n
    				

Formula

Let q=5; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111824).

A111830 Triangle P, read by rows, that satisfies [P^7](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(7*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 154, 49, 1, 1, 16275, 8281, 343, 1, 1, 9106461, 6558209, 410914, 2401, 1, 1, 28543862991, 27307109501, 2298650515, 20170801, 16807, 1, 1, 521136519414483, 636922972420469, 67522139062441, 790856748801, 988621354
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Also P(n,k) = partitions of (7^n - 7^(n-k)) into powers of 7 <= 7^(n-k).

Examples

			Let q=7; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 5/2!*x^2 + 83/3!*x^3 + 16110/4!*x^4 +... (A111834).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(7*x) + m^3/3!*L(x)*L(7*x)*L(7^2*x) +
m^4/4!*L(x)*L(7*x)*L(7^2*x)*L(7^3*x) + ...
Triangle P begins:
1;
1,1;
1,7,1;
1,154,49,1;
1,16275,8281,343,1;
1,9106461,6558209,410914,2401,1;
1,28543862991,27307109501,2298650515,20170801,16807,1; ...
where P^7 shifts columns left and up one place:
1;
7,1;
154,49,1;
16275,8281,343,1; ...
		

Crossrefs

Cf. A111831 (column 1), A111832 (row sums), A111833 (matrix log); triangles: A110503 (q=-1), A078121 (q=2), A078122 (q=3), A078536 (q=4), A111820 (q=5), A111825 (q=6), A111835 (q=8).

Programs

  • PARI
    P(n,k,q=7)=local(A=Mat(1),B);if(n
    				

Formula

Let q=7; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111834).

A111835 Triangle P, read by rows, that satisfies [P^8](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(8*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 232, 64, 1, 1, 36968, 16192, 512, 1, 1, 35593832, 21928768, 1047040, 4096, 1, 1, 219379963496, 178379459392, 11424946688, 67096576, 32768, 1, 1, 9003699178010216, 9288403489672000, 748093366229504, 5862250172416
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Also P(n,k) = partitions of (8^n - 8^(n-k)) into powers of 8 <= 8^(n-k).

Examples

			Let q=8; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 6/2!*x^2 + 142/3!*x^3 + 31800/4!*x^4 +... (A111839).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(8*x) + m^3/3!*L(x)*L(8*x)*L(8^2*x) + m^4/4!*L(x)*L(8*x)*L(8^2*x)*L(8^3*x) + ...
Triangle P begins:
1;
1,1;
1,8,1;
1,232,64,1;
1,36968,16192,512,1;
1,35593832,21928768,1047040,4096,1;
1,219379963496,178379459392,11424946688,67096576,32768,1; ...
where P^8 shifts columns left and up one place:
1;
8,1;
232,64,1;
36968,16192,512,1; ...
		

Crossrefs

Cf. A111836 (column 1), A111837 (row sums), A111838 (matrix log); triangles: A110503 (q=-1), A078121 (q=2), A078122 (q=3), A078536 (q=4), A111820 (q=5), A111825 (q=6), A111830 (q=7).

Programs

  • PARI
    P(n,k,q=8)=local(A=Mat(1),B);if(n
    				

Formula

Let q=8; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111839).

A111940 Triangle P, read by rows, that satisfies [P^-1](n,k) = P(n+1,k+1) for n >= k >= 0, with P(k,k)=1 and P(k+1,1)=P(k+1,0) for k >= 0, where [P^-1] denotes the matrix inverse of P.

Original entry on oeis.org

1, 1, 1, -1, -1, 1, 0, 0, 1, 1, 0, 0, -1, -1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2005

Keywords

Examples

			Triangle P begins:
   1;
   1,  1;
  -1, -1,  1;
   0,  0,  1,  1;
   0,  0, -1, -1,  1;
   0,  0,  0,  0,  1,  1;
   0,  0,  0,  0, -1, -1,  1;
   0,  0,  0,  0,  0,  0,  1,  1;
   0,  0,  0,  0,  0,  0, -1, -1,  1; ...
where P^-1 shifts columns left and up one place:
   1;
  -1,  1;
   0,  1,  1;
   0, -1, -1,  1;
   0,  0,  0,  1,  1;
   0,  0,  0, -1, -1,  1; ...
		

Crossrefs

Cf. A111941 (matrix log), A111942, A110503 (variant).

Programs

  • PARI
    {P(n,k,q=-1) = local(A=Mat(1),B); if(n
    				

Formula

The g.f. of column k of matrix power P^m (ignoring leading zeros) is:
cos(m*arccos(1-x^2/2)) + (-1)^k * sin(m*arccos(1-x^2/2)) * (1-x/2) / sqrt(1-x^2/4).
Showing 1-7 of 7 results.