A110566 a(n) = lcm{1,2,...,n}/denominator of harmonic number H(n).
1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 15, 45, 45, 45, 15, 3, 3, 1, 1, 1, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 77, 77, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9, 9, 9, 27, 27, 27, 9, 9, 9, 3, 3, 3, 3, 3, 33, 33, 33, 33, 11, 11, 11, 11, 11, 11, 11, 1, 1, 1
Offset: 1
Keywords
Examples
a(6) = 60/20 = 3 because lcm{1,2,3,4,5,6}=60 and H(6)=49/20.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end: L:= proc(n) L(n):= ilcm(n, `if`(n=1, 1, L(n-1))) end: a:= n-> L(n)/denom(H(n)): seq(a(n), n=1..100); # Alois P. Heinz, Aug 30 2012
-
Mathematica
f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Sep 15 2005 *)
-
PARI
a(n) = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); \\ Michel Marcus, Mar 07 2018
-
Python
from sympy import lcm, harmonic def A110566(n): return lcm([k for k in range(1,n+1)])//harmonic(n).q # Chai Wah Wu, Mar 06 2021
Formula
Extensions
More terms from Robert G. Wilson v, Sep 15 2005
Comments