A110601 a(n) = phi(n)*tau(n)^2, where phi is Euler's totient function and tau(n) is the number of divisors of n.
1, 4, 8, 18, 16, 32, 24, 64, 54, 64, 40, 144, 48, 96, 128, 200, 64, 216, 72, 288, 192, 160, 88, 512, 180, 192, 288, 432, 112, 512, 120, 576, 320, 256, 384, 972, 144, 288, 384, 1024, 160, 768, 168, 720, 864, 352, 184, 1600, 378, 720, 512, 864, 208, 1152, 640
Offset: 1
Examples
a(4)=18 because phi(4)=2 and tau(4)=3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
- Stefan Porubsky and M. G. Greening, Problem E2351, Amer. Math. Monthly, Vol. 80, No. 4 (1973), p. 436.
Programs
-
Magma
[EulerPhi(n)*NumberOfDivisors(n)^2: n in [1..60]]; // Vincenzo Librandi, Jun 21 2017
-
Maple
with(numtheory): a:=n->phi(n)*tau(n)^2: seq(a(n),n=1..70);
-
Mathematica
Table[EulerPhi[n]DivisorSigma[0,n]^2,{n,60}] (* Harvey P. Dale, Nov 29 2011 *)
-
PARI
a(n) = eulerphi(n)*numdiv(n)^2; \\ Michel Marcus, Jun 21 2017
Formula
Multiplicative with a(p^e) = (e+1)^2*(p-1)*p^(e-1). - Amiram Eldar, Dec 29 2022