cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110601 a(n) = phi(n)*tau(n)^2, where phi is Euler's totient function and tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 4, 8, 18, 16, 32, 24, 64, 54, 64, 40, 144, 48, 96, 128, 200, 64, 216, 72, 288, 192, 160, 88, 512, 180, 192, 288, 432, 112, 512, 120, 576, 320, 256, 384, 972, 144, 288, 384, 1024, 160, 768, 168, 720, 864, 352, 184, 1600, 378, 720, 512, 864, 208, 1152, 640
Offset: 1

Views

Author

Emeric Deutsch, Jul 29 2005

Keywords

Examples

			a(4)=18 because phi(4)=2 and tau(4)=3.
		

Crossrefs

Programs

  • Magma
    [EulerPhi(n)*NumberOfDivisors(n)^2: n in [1..60]]; // Vincenzo Librandi, Jun 21 2017
  • Maple
    with(numtheory): a:=n->phi(n)*tau(n)^2: seq(a(n),n=1..70);
  • Mathematica
    Table[EulerPhi[n]DivisorSigma[0,n]^2,{n,60}] (* Harvey P. Dale, Nov 29 2011 *)
  • PARI
    a(n) = eulerphi(n)*numdiv(n)^2; \\ Michel Marcus, Jun 21 2017
    

Formula

a(n) = A000010(n) * A035116(n) = A062355(n) * A000005(n). - R. J. Mathar, Jul 26 2022
Multiplicative with a(p^e) = (e+1)^2*(p-1)*p^(e-1). - Amiram Eldar, Dec 29 2022