cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110614 a(n+3) = 5*a(n+2) - 2*a(n+1) - 8*a(n), a(0) = 1, a(1) = 5, a(2) = 15.

Original entry on oeis.org

1, 5, 15, 57, 215, 841, 3319, 13193, 52599, 210057, 839543, 3356809, 13424503, 53692553, 214759287, 859015305, 3436017527, 13743982729, 54975756151, 219902675081, 879610001271, 3518438606985, 14073751631735, 56295000934537, 225179992553335, 900719947843721
Offset: 0

Views

Author

Creighton Dement, Jul 31 2005

Keywords

Comments

See comment for A110613.

Crossrefs

Programs

  • Maple
    seriestolist(series((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2ibasejsumseq[(.5'i - .5'k - .5i' + .5k' - .5'ij' - .5'ji' - .5'jk' - .5'kj')('i + j' + 'ij' + 'ji')] Sumtype is set to: sum[Y[15]] = sum[ * ] (disregarding signs)
  • Mathematica
    LinearRecurrence[{5,-2,-8},{1,5,15},30] (* Harvey P. Dale, Dec 28 2013 *)
  • PARI
    Vec((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)) + O(x^30)) \\ Colin Barker, Feb 05 2017

Formula

G.f.: (1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)).
a(n) + a(n+1) = A063376(n+1).
a(n) = (-7*(-1)^n + 5*2^(1+n) + 3*4^(1+n)) / 15. - Colin Barker, Feb 05 2017