cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A278588 Triangle read by rows: T(p_1,p_2) = maximal period of a decimal fraction (r/s)*(t/u) given that r/s has period p_1 and t/u has period p_2 (1 <= p_1 <= p_2).

Original entry on oeis.org

9, 18, 198, 27, 54, 2997, 36, 396, 108, 39996, 45, 90, 135, 180, 499995, 54, 594, 5994, 3564, 270, 5999994, 63, 126, 189, 252, 315
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2016, based on English translations provided by Arie Bos and R. J. Mathar

Keywords

Examples

			Triangle begins (read down columns):
...1.....2....3....4....5.....6......7....(p_2)
1..9....18...27...36...45....54.....63
2......198...54..396...90...594....126
3..........2997..108..135..5994....189
4..............39996..180..3564....252
5..................499995...270....315
...
(p_1)
		

Crossrefs

Cf. A110807 (diagonal?)

A328683 Positive integers that are equal to 99...99 (repdigit with n digits 9) times the sum of their digits.

Original entry on oeis.org

81, 1782, 26973, 359964, 4499955, 53999946, 629999937, 7199999928, 80999999919, 899999999910, 9899999999901, 107999999999892, 1169999999999883, 12599999999999874, 134999999999999865, 1439999999999999856, 15299999999999999847, 161999999999999999838
Offset: 1

Views

Author

Bernard Schott, Feb 25 2020

Keywords

Comments

The idea of this sequence comes from a problem during the annual Moscow Mathematical Olympiad (MMO) in 2001 (see reference).

Examples

			359964 = 36 * 9999 and the digital sum of 359964 = 36 , so 359964 = a(4).
		

References

  • Roman Fedorov, Alexei Belov, Alexander Kovaldzhi, Ivan Yashchenko, Moscow Mathematical Olympiads, 2000-2005, Level B, Problem 5, 2001, MSRI, 2011, p. 8 and 70/71.

Crossrefs

Programs

  • Maple
    C:=seq(9*n*(10^n-1),n=1..20);
  • Mathematica
    Table[9*n*(10^n - 1), {n, 1, 18}] (* Amiram Eldar, Feb 25 2020 *)
    LinearRecurrence[{22,-141,220,-100},{81,1782,26973,359964},20] (* Harvey P. Dale, Feb 02 2025 *)
  • PARI
    Vec(81*x*(1 - 10*x^2) / ((1 - x)^2*(1 - 10*x)^2) + O(x^20)) \\ Colin Barker, Feb 25 2020

Formula

a(n) = 9 * n * (10^n - 1).
From Colin Barker, Feb 25 2020: (Start)
G.f.: 81*x*(1 - 10*x^2) / ((1 - x)^2*(1 - 10*x)^2).
a(n) = 22*a(n-1) - 141*a(n-2) + 220*a(n-3) - 100*a(n-4) for n>4.
(End)
From Michel Marcus, Feb 25 2020: (Start)
a(n) = 9*A110807(n).
a(n) = n*A086580(n). (End)

A109137 Numbers k such that k * (10^k - 1) + 1 is prime.

Original entry on oeis.org

2, 14, 42, 144, 200, 302, 7242, 8718, 10568, 24438, 41734
Offset: 1

Views

Author

Jason Earls, Aug 18 2005

Keywords

Comments

Larger values certified with ECM. No more up to 6000.

Crossrefs

Cf. A110807.

Programs

  • PARI
    is(n)=ispseudoprime(n*(10^n-1)+1) \\ Charles R Greathouse IV, Jun 13 2017
    
  • Python
    from sympy import isprime
    def afind(limit, startk=1):
        k, pow10 = startk, 10**startk
        for k in range(startk, limit+1):
            if isprime(k*(pow10 - 1) + 1): print(k, end=", ")
            k += 1
            pow10 *= 10
    afind(500) # Michael S. Branicky, Aug 26 2021

Extensions

a(7)-a(8) from Ryan Propper, Sep 20 2006
a(9) from Michael S. Branicky, Aug 26 2021
a(10) from Michael S. Branicky, Apr 05 2023
a(11) from Michael S. Branicky, Oct 17 2024
Showing 1-3 of 3 results.