cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110905 a(n) is the least number k such that k*prime(n)# - 1 is prime and (k*prime(n)# - 1)^2 - 2 is a Chen prime.

Original entry on oeis.org

2, 1, 1, 11, 1, 6, 41, 17, 8, 13, 14, 107, 84, 23, 4, 101, 13, 89, 211, 58, 83, 75, 260, 414, 35, 39, 871, 79, 27, 42, 915, 44, 349, 142, 249, 404, 140, 84, 1068, 693, 972, 236, 1571, 1200, 298, 423, 970, 183, 173, 659, 523, 645, 1596, 448, 40, 201, 195, 1859, 427, 1732
Offset: 1

Views

Author

Pierre CAMI, Sep 21 2005

Keywords

Examples

			2*2-1 = 3, (2*2-1)^2-2 = 7, 3 and 7 are primes, so a(1) = 2.
11*2*3*5*7-1 = 2309, (11*2*3*5*7-1)^2-2 = 5331479, 2309 and 5331479 are primes, so a(4) = 11.
		

Crossrefs

Programs

  • Mathematica
    chenQ[n_] := PrimeQ[n] && PrimeOmega[n+2] <= 2; a[n_] := Module[{p = Product[Prime[i], {i, 1, n}], k = 0}, While[!PrimeQ[k*p - 1] || !chenQ[(k*p-1)^2-2], k++]; k]; Array[a, 60] (* Amiram Eldar, Sep 11 2021 *)
  • PARI
    isok(k, q) = if (isprime(k*q-1), my(c=(k*q-1)^2-2); (isprime(c) && (bigomega(c+2)<=2)));
    a(n) = my(k=1, q=prod(i=1, n, prime(i))); while (!isok(k, q), k++); k; \\ Michel Marcus, Sep 11 2021