cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111002 a(n) = gcd(f(n), f(n+1)) where f(n) = n^4 + n^2 + 1.

Original entry on oeis.org

1, 3, 7, 91, 21, 31, 43, 57, 73, 91, 777, 133, 157, 183, 211, 241, 273, 2149, 343, 381, 421, 463, 507, 553, 4207, 651, 703, 757, 813, 871, 931, 6951, 1057, 1123, 1191, 1261, 1333, 1407, 10381, 1561, 1641, 1723, 1807, 1893, 1981, 14497, 2163, 2257, 2353
Offset: 0

Views

Author

Pahikkala Jussi, Sep 30 2005

Keywords

Examples

			a(10) = 7(10^2 + 10 + 1) = 777 because 10 is congruent to 3 modulo 7.
		

Programs

  • Magma
    [Gcd(n^4+n^2+1, n^4+4*n^3+7*n^2+6*n+3): n in [0..50]]; // Vincenzo Librandi, Oct 07 2015
  • Mathematica
    f[n_] := n^4 + n^2 + 1; Table[ GCD[f[n], f[n + 1]], {n, 0, 49}] (* Robert G. Wilson v, Oct 02 2005 *)
    GCD[#[[1]],#[[2]]]&/@Partition[Table[n^4+n^2+1,{n,0,50}],2,1] (* Harvey P. Dale, Mar 07 2015 *)
  • PARI
    m=50;a=3;for(k=2,m,b=k^4+k^2+1;print1(gcd(a,b),",");a=b) \\ Klaus Brockhaus, Oct 02 2005
    

Formula

a(n) = gcd(f(n), f(n+1)) for all n. a(n) = n^2 + n + 1, except when n congruent to 3 modulo 7 when a(n) = 7(n^2 + n + 1).
Conjectures from Colin Barker, Oct 06 2015: (Start)
a(n) = 3*a(n-7) - 3*a(n-14) + a(n-21) for n>20.
G.f.: -(x^20 +3*x^19 +7*x^18 +91*x^17 +21*x^16 +31*x^15 +43*x^14 +54*x^13 +64*x^12 +70*x^11 +504*x^10 +70*x^9 +64*x^8 +54*x^7 +43*x^6 +31*x^5 +21*x^4 +91*x^3 +7*x^2 +3*x +1) / ((x -1)^3*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)^3).
(End)

Extensions

More terms from Robert G. Wilson v and Klaus Brockhaus, Oct 02 2005