A111035 Numbers n that divide the sum of the first n nonzero Fibonacci numbers.
1, 2, 24, 48, 72, 77, 96, 120, 144, 192, 216, 240, 288, 319, 323, 336, 360, 384, 432, 480, 576, 600, 648, 672, 720, 768, 864, 960, 1008, 1080, 1104, 1152, 1200, 1224, 1296, 1320, 1344, 1368, 1440, 1517, 1536, 1680, 1728, 1800, 1920, 1944, 2016, 2064, 2160
Offset: 1
Keywords
Examples
2 | 4, 24 | 121392, 48 | 12586269024, ... [Corrected by _M. F. Hasler_, Feb 06 2020]
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Ron Knott, The Mathematical Magic of the Fibonacci Numbers
- Daniel Yaqubi and Amirali Fatehizadeh, Some results on average of Fibonacci and Lucas sequences, arXiv:2001.11839 [math.CO], 2020.
Crossrefs
Programs
-
GAP
Filtered([1..3000], n-> ((Fibonacci(n+2)-1) mod n)=0 ); # G. C. Greubel, Feb 03 2020
-
Magma
[1] cat [n: n in [1..3000] | Fibonacci(n+2) mod n eq 1 ]; // G. C. Greubel, Feb 03 2020
-
Maple
select(n-> irem(combinat[fibonacci](n+2)-1, n)=0, [$1..3000])[]; # G. C. Greubel, Feb 03 2020
-
Mathematica
Select[Range[3000], Mod[Fibonacci[ #+2]-1, # ]==0&] (* T. D. Noe, Oct 06 2005 *)
-
PARI
is(n)=((Mod([1,1;1,0],n))^(n+2))[1,2]==1 \\ Charles R Greathouse IV, Feb 04 2013
-
Sage
[n for n in (1..3000) if mod(fibonacci(n+2), n)==1 ] # G. C. Greubel, Feb 03 2020
Formula
{n: n| A000071(n+2)}. - R. J. Mathar, Feb 05 2020
Extensions
More terms from Rick L. Shepherd and T. D. Noe, Oct 06 2005
Comments