cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111035 Numbers n that divide the sum of the first n nonzero Fibonacci numbers.

Original entry on oeis.org

1, 2, 24, 48, 72, 77, 96, 120, 144, 192, 216, 240, 288, 319, 323, 336, 360, 384, 432, 480, 576, 600, 648, 672, 720, 768, 864, 960, 1008, 1080, 1104, 1152, 1200, 1224, 1296, 1320, 1344, 1368, 1440, 1517, 1536, 1680, 1728, 1800, 1920, 1944, 2016, 2064, 2160
Offset: 1

Views

Author

Joseph L. Pe, Oct 05 2005

Keywords

Comments

The sum of the first n nonzero Fibonacci numbers is F(n+2)-1, sequence A000071. Knott discusses the factorization of these numbers. Most of the terms are divisible by 24. - T. D. Noe, Oct 10 2005, edited by M. F. Hasler, Mar 01 2020
All terms are either multiples of 24 (cf. A124455) or odd (cf. A331976) or congruent to 2 (mod 12), cf. A331870 where this statement is proved. - M. F. Hasler, Mar 01 2020

Examples

			2 | 4, 24 | 121392, 48 | 12586269024, ... [Corrected by _M. F. Hasler_, Feb 06 2020]
		

Crossrefs

See A101907 for another version.
Cf. A111058 (the analog for Lucas numbers).
Cf. A124455 (k for a(n) = 24k), A124456 (other a(n)), A331976 (odd a(n)), A331870 (even a(n) != 24k).

Programs

  • GAP
    Filtered([1..3000], n-> ((Fibonacci(n+2)-1) mod n)=0 ); # G. C. Greubel, Feb 03 2020
  • Magma
    [1] cat [n: n in [1..3000] | Fibonacci(n+2) mod n eq 1 ]; // G. C. Greubel, Feb 03 2020
    
  • Maple
    select(n-> irem(combinat[fibonacci](n+2)-1, n)=0, [$1..3000])[]; # G. C. Greubel, Feb 03 2020
  • Mathematica
    Select[Range[3000], Mod[Fibonacci[ #+2]-1, # ]==0&] (*  T. D. Noe, Oct 06 2005 *)
  • PARI
    is(n)=((Mod([1,1;1,0],n))^(n+2))[1,2]==1 \\ Charles R Greathouse IV, Feb 04 2013
    
  • Sage
    [n for n in (1..3000) if mod(fibonacci(n+2), n)==1 ] # G. C. Greubel, Feb 03 2020
    

Formula

{n: n| A000071(n+2)}. - R. J. Mathar, Feb 05 2020

Extensions

More terms from Rick L. Shepherd and T. D. Noe, Oct 06 2005