cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111064 Numbers n such that the sum of the digits of the n-th Fibonacci number written in bases 2, 3, 5 and 7 is prime.

Original entry on oeis.org

7, 8, 10, 17, 47, 61, 70, 170, 185, 299, 766, 950, 1247, 1669, 1879, 2063, 2090, 2701, 3071, 5809, 6190, 7057, 7409, 8410, 12754, 13303, 13421, 14533, 16250, 18793, 24766, 24895, 27370, 28594, 28870, 29093, 29189, 30647, 31481, 36334, 38123, 38957
Offset: 1

Views

Author

Stefan Steinerberger, Nov 12 2005

Keywords

Examples

			21 is the 8th Fibonacci number. Written in bases 2,3,5,7 we obtain 10101, 210, 41 and 30. The sum of the digits of each of this representations is prime, so 8 is an element of the sequence.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Union@PrimeQ[Plus @@@ IntegerDigits[ Fibonacci@n, {2, 3, 5, 7}]] == {True}; Select[ Range[39285], fQ[ # ] &] (* Robert G. Wilson v *)
    Select[Range[40000],AllTrue[Total/@IntegerDigits[Fibonacci[#],{2,3,5,7}],PrimeQ]&] (* Harvey P. Dale, Sep 09 2021 *)
  • MuPAD
    for n from 1 to 1500 do a := numlib::fibonacci(n); if numlib::proveprime(numlib::sumOfDigits(a,2)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a,3)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a,5)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a,7)) = TRUE then print(n); end_if; end_if; end_if; end_if; end_for;

Extensions

More terms from Robert G. Wilson v, Nov 14 2005
Corrected by Harvey P. Dale, Sep 09 2021