cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111071 Difference between the product of two consecutive primes and the next prime.

Original entry on oeis.org

1, 8, 24, 64, 126, 202, 300, 408, 636, 862, 1106, 1474, 1716, 1968, 2432, 3066, 3532, 4016, 4684, 5104, 5684, 6468, 7290, 8532, 9694, 10296, 10912, 11550, 12190, 14220, 16500, 17808, 18894, 20560, 22342, 23544, 25424, 27048, 28712, 30786, 32208
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Oct 09 2005

Keywords

Examples

			a(4)= prime(4)*prime(5)-prime(6) = 7*11-13=64.
		

Crossrefs

Cf. A000040.

Programs

  • Magma
    [NthPrime(n)*NthPrime(n+1)-NthPrime(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 18 2015
  • Maple
    seq(ithprime(n)*ithprime(n+1)-ithprime(n+2), n=1..50); # Emeric Deutsch, Oct 10 2005
  • Mathematica
    f[n_] := Prime[n]Prime[n + 1] - Prime[n + 2]; Table[ f[n], {n, 41}] (* Robert G. Wilson v, Oct 10 2005  *)
    #[[1]]*#[[2]]-#[[3]]&/@Partition[Prime[Range[50]],3,1] (* Harvey P. Dale, Aug 06 2015 *)
  • PARI
    main(size)=my(n);vector(size,n,prime(n)*prime(n+1)-prime(n+2)) /* Anders Hellström, Jul 16 2015 */
    

Formula

a(n) = prime(n)*prime(n+1)-prime(n+2) = A006094(n)-A000040(n+2) = 2*A152527(n-1).

Extensions

More terms from Robert G. Wilson v and Emeric Deutsch, Oct 10 2005