A111072 Write the digit string 0123456789, repeated infinitely many times. Then, starting from the first "0" digit at the left end, move to the right by one digit (to the "1"), then two digits (to the "3"), then three digits (to the "6"), four digits ("0"), five digits ("5"), and so on. Partial sums of the digits thus reached are 0, 1, 4, 10, 10, 15, ...
0, 1, 4, 10, 10, 15, 16, 24, 30, 35, 40, 46, 54, 55, 60, 60, 66, 69, 70, 70, 70, 71, 74, 80, 80, 85, 86, 94, 100, 105, 110, 116, 124, 125, 130, 130, 136, 139, 140, 140, 140, 141, 144, 150, 150, 155, 156, 164, 170, 175, 180, 186, 194, 195, 200, 200, 206, 209, 210
Offset: 0
Examples
a(9) = 35 because a(8) - a(7) + (9 mod 10) = 30 - 24 + 9 = 15 and a(8) + (15 mod 10) = 30 + 5 = 35. Jumping we move to the numbers 0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, 0, 1, 3, 6, 0, 5, 1, 8, 6, etc. Summing the numbers we obtain 0, 0+1 = 1, 1+3 = 4, 4+6 = 10, 10+0 = 10, 10+5 = 16, etc.
References
- Giorgio Balzarotti and Paolo P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 62.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- J. Bokowski & N. J. A. Sloane, Emails, June 1994.
Crossrefs
Cf. A008954.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+ [0,1,3,6,0,5,1,8,6,5,5,6,8,1,5,0,6,3,1,0,0] [1+irem(n, 20)]) end: seq(a(n), n=0..60); # Alois P. Heinz, Jan 23 2021
-
Mathematica
Fold[Append[#1, #1[[-1]] + Mod[(#1[[-1]] - #1[[-2]] + Mod[#2, 10]), 10]] &, {0, 1}, Range[2, 58]] (* Michael De Vlieger, Nov 05 2017 *)
Formula
a(n+1) = a(n) + (a(n) - a(n-1) + (n+1) mod 10) mod 10, with a(0)=0, a(1)=1.
G.f.: x*(x^12+3*x^11+6*x^10+5*x^8+5*x^6+5*x^4+6*x^2+3*x+1) / (x^16 -x^15 -x^11 +x^10 +x^6 -x^5 -x +1). - Alois P. Heinz, Jan 23 2021
Comments