cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111072 Write the digit string 0123456789, repeated infinitely many times. Then, starting from the first "0" digit at the left end, move to the right by one digit (to the "1"), then two digits (to the "3"), then three digits (to the "6"), four digits ("0"), five digits ("5"), and so on. Partial sums of the digits thus reached are 0, 1, 4, 10, 10, 15, ...

Original entry on oeis.org

0, 1, 4, 10, 10, 15, 16, 24, 30, 35, 40, 46, 54, 55, 60, 60, 66, 69, 70, 70, 70, 71, 74, 80, 80, 85, 86, 94, 100, 105, 110, 116, 124, 125, 130, 130, 136, 139, 140, 140, 140, 141, 144, 150, 150, 155, 156, 164, 170, 175, 180, 186, 194, 195, 200, 200, 206, 209, 210
Offset: 0

Views

Author

Keywords

Comments

The first differences 0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, etc. are in A008954.

Examples

			a(9) = 35 because a(8) - a(7) + (9 mod 10) = 30 - 24 + 9 = 15 and a(8) + (15 mod 10) = 30 + 5 = 35.
Jumping we move to the numbers 0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, 0, 1, 3, 6, 0, 5, 1, 8, 6, etc. Summing the numbers we obtain 0, 0+1 = 1, 1+3 = 4, 4+6 = 10, 10+0 = 10, 10+5 = 16, etc.
		

References

  • Giorgio Balzarotti and Paolo P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 62.

Crossrefs

Cf. A008954.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+
          [0,1,3,6,0,5,1,8,6,5,5,6,8,1,5,0,6,3,1,0,0]
          [1+irem(n, 20)])
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 23 2021
  • Mathematica
    Fold[Append[#1, #1[[-1]] + Mod[(#1[[-1]] - #1[[-2]] + Mod[#2, 10]), 10]] &, {0, 1}, Range[2, 58]] (* Michael De Vlieger, Nov 05 2017 *)

Formula

a(n+1) = a(n) + (a(n) - a(n-1) + (n+1) mod 10) mod 10, with a(0)=0, a(1)=1.
G.f.: x*(x^12+3*x^11+6*x^10+5*x^8+5*x^6+5*x^4+6*x^2+3*x+1) / (x^16 -x^15 -x^11 +x^10 +x^6 -x^5 -x +1). - Alois P. Heinz, Jan 23 2021