A111093 Like sequence A111072 but moving right by the squares of the sequence of positive integers.
0, 1, 6, 10, 10, 15, 16, 16, 20, 25, 30, 36, 36, 45, 50, 50, 56, 61, 70, 70, 70, 71, 76, 80, 80, 85, 86, 86, 90, 95, 100, 106, 106, 115, 120, 120, 126, 131, 140, 140, 140, 141, 146, 150, 150, 155, 156, 156, 160, 165, 170, 176, 176, 185, 190, 190, 196, 201, 210, 210
Offset: 0
Examples
a(8) = 20 because a(7) - a(6) + (8^2 mod 10) = 16 - 16 + 4 = 4 and a(7) + (4 mod 10) = 16 + 4 = 20. Jumping by the squares of the sequence of positive integers we move to the numbers 0, 1, 5, 4, 0, 5, 1, 0, 4, 5, etc. Summing the numbers we obtain 0, 0+1=1, 1+5=6, 6+4=10, 10+0=10, 10+5=15, etc.
References
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 62.
Crossrefs
Cf. A111072.
Programs
-
Maple
ANM:=proc(N) global anplus1,anminus1; local an,i; anminus1:=0; an:=1; print (anminus1, an); for i from 2 by 1 to N do anplus1:=an+((an-anminus1+ i^2 mod 10) mod 10); print(anplus1); anminus1:=an; an:=anplus1; od; end: ANM(100);
Formula
a(n+1) = a(n) + ( a(n) - a(n-1) + (n+1)^2 mod 10 ) mod 10, with a(0)=0, a(1)=1.
Conjectures from Chai Wah Wu, Jan 28 2024: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) - a(n-10) + a(n-11) + a(n-15) - a(n-16) for n > 15.
G.f.: x*(9*x^12 + 5*x^11 + 6*x^10 + 5*x^8 - 5*x^6 + 5*x^4 + 4*x^2 + 5*x + 1)/(x^16 - x^15 - x^11 + x^10 + x^6 - x^5 - x + 1). (End)
Comments