cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111093 Like sequence A111072 but moving right by the squares of the sequence of positive integers.

Original entry on oeis.org

0, 1, 6, 10, 10, 15, 16, 16, 20, 25, 30, 36, 36, 45, 50, 50, 56, 61, 70, 70, 70, 71, 76, 80, 80, 85, 86, 86, 90, 95, 100, 106, 106, 115, 120, 120, 126, 131, 140, 140, 140, 141, 146, 150, 150, 155, 156, 156, 160, 165, 170, 176, 176, 185, 190, 190, 196, 201, 210, 210
Offset: 0

Views

Author

Keywords

Comments

Sequences of the form a(n+1) = a(n) + (a(n) - a(n-1) + (n+1)^k mod 10) mod 10 with a(0)=0, a(1)=1 and k=1,2,3,4,5, etc. are identical if the exponents "k" differ by 4. Therefore this sequence, where k = 2, is the same as those with exponents 6, 10, 14, 18, etc. - Paolo P. Lava, Sep 29 2006

Examples

			a(8) = 20 because a(7) - a(6) + (8^2 mod 10) = 16 - 16 + 4 = 4 and a(7) + (4 mod 10) = 16 + 4 = 20.
Jumping by the squares of the sequence of positive integers we move to the numbers 0, 1, 5, 4, 0, 5, 1, 0, 4, 5, etc. Summing the numbers we obtain 0, 0+1=1, 1+5=6, 6+4=10, 10+0=10, 10+5=15, etc.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 62.

Crossrefs

Cf. A111072.

Programs

  • Maple
    ANM:=proc(N) global anplus1,anminus1; local an,i; anminus1:=0; an:=1; print (anminus1, an); for i from 2 by 1 to N do anplus1:=an+((an-anminus1+ i^2 mod 10) mod 10); print(anplus1); anminus1:=an; an:=anplus1; od; end: ANM(100);

Formula

a(n+1) = a(n) + ( a(n) - a(n-1) + (n+1)^2 mod 10 ) mod 10, with a(0)=0, a(1)=1.
Conjectures from Chai Wah Wu, Jan 28 2024: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) - a(n-10) + a(n-11) + a(n-15) - a(n-16) for n > 15.
G.f.: x*(9*x^12 + 5*x^11 + 6*x^10 + 5*x^8 - 5*x^6 + 5*x^4 + 4*x^2 + 5*x + 1)/(x^16 - x^15 - x^11 + x^10 + x^6 - x^5 - x + 1). (End)