A111108 a(n) = A001333(n) - (-2)^(n-1), n > 0.
0, 5, 3, 25, 25, 131, 175, 705, 1137, 3875, 7095, 21649, 43225, 122435, 259423, 698625, 1541985, 4011971, 9107175, 23143825, 53559817, 133933475, 314086735, 776787009, 1838300625, 4512108515, 10745077143, 26237143825, 62749602745
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,5,2).
Programs
-
Mathematica
LinearRecurrence[{0,5,2},{0,5,3},30] (* Harvey P. Dale, May 03 2022 *)
-
PARI
concat(0, Vec(x^2*(5 + 3*x) / ((1 + 2*x)*(1 - 2*x - x^2)) + O(x^35))) \\ Colin Barker, May 01 2019
Formula
From Colin Barker, Apr 30 2019: (Start)
G.f.: x^2*(5 + 3*x) / ((1 + 2*x)*(1 - 2*x - x^2)).
a(n) = 5*a(n-2) + 2*a(n-3) for n>3.
(End)
Comments