A111170 Semiprimes S such that 3*S + 1 is also a semiprime.
15, 35, 38, 39, 55, 62, 82, 86, 87, 91, 106, 111, 115, 118, 119, 134, 142, 155, 159, 178, 187, 194, 218, 226, 235, 254, 259, 267, 278, 287, 295, 298, 299, 314, 319, 326, 327, 334, 335, 339, 371, 382, 386, 391, 395, 398, 411, 422, 427, 446, 451, 454, 502, 515
Offset: 1
Examples
n s(n) 3*s + 1 1 15 = 3 * 5 46 = 2 * 23 2 35 = 5 * 7 106 = 2 * 53 3 38 = 2 * 19 115 = 5 * 23 4 39 = 3 * 13 118 = 2 * 59 5 55 = 5 * 11 166 = 2 * 83 6 62 = 2 * 31 187 = 11 * 17
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= n-> andmap(x-> 2=numtheory[bigomega](x), [n, 3*n+1]): select(q, [$4..515])[]; # Alois P. Heinz, May 02 2024 # alternative N:= 10^4: # to get all terms < (N-1)/3 Primes:= select(isprime, [2, seq(2*k+1, k=1..floor(N/2))]): SP:={seq(seq(p*q, q=Primes[1..ListTools:-BinaryPlace(Primes, N/p)]), p=Primes)} minus {seq(p^2, p=Primes)}: sort(convert(SP intersect map(t -> (t-1)/3, SP), list)); # Robert Israel, Dec 10 2024
-
Mathematica
Select[Range[515],PrimeOmega[#]==2&&PrimeOmega[3*#+1]==2&] (* James C. McMahon, May 01 2024 *)
Extensions
Extended by Ray Chandler, Oct 22 2005
Comments