A111173 Sophie Germain triprimes: k and 2k + 1 are both the product of 3 primes, not necessarily distinct.
52, 76, 130, 171, 172, 212, 238, 318, 322, 325, 332, 357, 370, 387, 388, 402, 423, 430, 436, 442, 465, 507, 508, 556, 604, 610, 654, 665, 670, 710, 722, 747, 759, 762, 772, 775, 786, 790, 805, 814, 822, 826, 847, 874, 885, 902, 906, 916, 927, 942, 987, 1004
Offset: 1
Examples
n k = a(n) 2k + 1 = ================ ================ 1 52 = 2^2 * 13 105 = 3 * 5 * 7 2 76 = 2^2 * 19 153 = 3^2 * 17 3 130 = 2 * 5 * 13 261 = 3^2 * 29 4 171 = 3^2 * 19 343 = 7^3 5 172 = 2^2 * 43 345 = 3 * 5 * 23 6 212 = 2^2 * 53 425 = 5^2 * 17
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
- OEIS Wiki, Triprimes
Programs
-
Magma
Is3primes:=func; [n: n in [2..1200] | Is3primes(n) and Is3primes(2*n+1)]; // Vincenzo Librandi, Aug 19 2018
-
Mathematica
fQ[n_]:=PrimeOmega[n] == 3 == PrimeOmega[2 n + 1]; Select[Range@1100, fQ] (* Vincenzo Librandi, Aug 19 2018 *)
-
PARI
is(n)=bigomega(n)==3 && bigomega(2*n+1)==3 \\ Charles R Greathouse IV, Feb 01 2017
Extensions
Extended by Ray Chandler, Oct 22 2005
Edited by Jon E. Schoenfield, Aug 18 2018
Comments