A111206 Semi-Sophie Germain semiprimes: semiprimes which are the product of Sophie Germain primes.
4, 6, 9, 10, 15, 22, 25, 33, 46, 55, 58, 69, 82, 87, 106, 115, 121, 123, 145, 159, 166, 178, 205, 226, 249, 253, 262, 265, 267, 319, 339, 346, 358, 382, 393, 415, 445, 451, 466, 478, 502, 519, 529, 537, 562, 565, 573, 583, 586, 655, 667, 699, 717, 718, 753, 838
Offset: 1
Keywords
Examples
a(4) = 10 because 10 is the 4th semiprime both the prime factors of which are Sophie Germain primes.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lst={};Do[If[Plus@@Last/@FactorInteger[n]==2,a=First/@FactorInteger[n];b=a[[1]];k=0;If[Length[a]==2,c=a[[2]];If[ !PrimeQ[2*c+1],k=1]];If[PrimeQ[2*b+1]&&k==0,AppendTo[lst,n]]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 27 2009 *) Module[{nn=100,sgp},sgp=Select[Prime[Range[100]],PrimeQ[2#+1]&];Select[ Union[ Times@@@Tuples[sgp,2]],#<=10nn&]] (* Harvey P. Dale, May 08 2019 *)
-
PARI
list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\2, if(isprime(2*p+1), listput(u,p))); for(i=1,#u, for(j=1,i, t=u[i]*u[j]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Feb 05 2017
Extensions
Extended by Ray Chandler, Oct 31 2005
Comments