cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111258 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+601)^2 = y^2.

Original entry on oeis.org

0, 539, 560, 1803, 4740, 4859, 12020, 29103, 29796, 71519, 171080, 175119, 418296, 998579, 1022120, 2439459, 5821596, 5958803, 14219660, 33932199, 34731900, 82879703, 197772800, 202433799, 483059760, 1152705803, 1179872096
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 03 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+601, y).
Corresponding values y of solutions (x, y) are in A160098.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (843+418*sqrt(2))/601 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (361299+5950*sqrt(2))/601^2 for n mod 3 = 0.

Crossrefs

Cf. A160098, A001652, A101152, A156035 (decimal expansion of 3+2*sqrt(2)), A160099 (decimal expansion of (843+418*sqrt(2))/601), A160100 (decimal expansion of (361299+5950*sqrt(2))/601^2).

Programs

  • Magma
    I:=[0,539,560,1803,4740,4859,12020]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) -Self(n-6) + Self(n-7): n in [1..30]]; // G. C. Greubel, Apr 22 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,539,560,1803,4740,4859,12020}, 50] (* G. C. Greubel, Apr 22 2018 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1202*n+361201), print1(n, ",")))}
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(539 +21*x +1243*x^2 -297*x^3 -7*x^4 -297*x^5)/((1-x)*(1 -6*x^3 +x^6)))) \\ G. C. Greubel, Apr 22 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 1202 for n > 6; a(1)=0, a(2)=539, a(3)=560, a(4)=1803, a(5)=4740, a(6)=4859.
G.f.: x*(539 +21*x +1243*x^2 -297*x^3 -7*x^4 -297*x^5)/((1-x)*(1 -6*x^3 +x^6)).
a(3*k+1) = 601*A001652(k) for k >= 0.

Extensions

Edited and one term added by Klaus Brockhaus, May 18 2009